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Abstract

We consider several population dynamics models in investigating data from controlled experiments with
aphids in broccoli patches surrounded by different margin types (bare or weedy ground) and three levels of
insecticide spray (no, light, or heavy spray). We carry out parameter estimation computations along with
statistical analysis to compare autonomous versus nonautonomous model dynamics. We conclude with a
brief discussion of some not-so-subtle pitfalls that can arise when using quantitative measures of model fit-
to-data to make biological inferences as well as offer a positive example of how one might combine a priori
biological hypothesis and intuition with rather sophisticated (from a field biology viewpoint) mathematical
methodologies to suggest synergisms.

1 Introduction

Ecologists interested in issues including insect pest control and preservation of rare species study the effects
of various types of disturbances on insect populations. Historically, disturbances such as introduction of
natural enemies, vegetation diversity, and traditional pesticides have each been considered independently.
Often however, introduction of habitat diversity or natural enemies proves inadequate as a single control
on insect herbivore populations. Furthermore, risks associated with traditional pesticides often make their
use undesirable. We report here on a previous field study that explores the combined effect of vegetation
diversity and chemical intervention, and offer new mathematical observations based on its data.

Ecologists have long considered increasing plant diversity to regulate insect herbivore populations in
agroecosystems (see, e.g., [4] & [10]). Habitat diversity either entices herbivores to leave the protected
area or boosts natural enemy populations in the surrounding area ([16], [22]). These methods are often
moderately successful, but their effects are not typically sufficient for pest control ([1], [21]). (For more
extensive information on vegetation diversity studies, consult the references in Banks and Stark [6].)

Chemical pesticide application is another long-standing, popular, and often successful single form of
population regulation, but broad spectrum pesticides are often criticized for their environmental and public
health risks. In response, biorational pesticides that target only certain insect taxa have been developed. The
selectivity of these pesticides may be doubly advantageous: they can simultaneously target herbivore pests
while leaving natural enemies in the ecosystem intact. This selectivity suggests regulating insect herbivores
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with combinations of pesticide disturbances and biotic factors (including natural enemies and vegetation
diversity). Ecologists are optimistic about the success of such combined intervention. In fact, laboratory
and field studies by Losey and Denno [15] show that combinations of two or more natural enemies may act
synergistically, while other studies suggest additive [8] or sub-additive [17] interactions. The work described
in this report is motivated by the hope that the synergy of selective pesticides and natural enemies present in
weedy vegetation will reduce insect herbivore populations.

In the summer of 1999, Banks and Stark [6] conducted a full-factorial design field experiment to explore
the potentially combined effects of vegetation diversity and selective pesticide disturbance on aphid pop-
ulations in a broccoli agroecosystem. They applied three concentration levels of the biorational pesticide
imidacloprid to broccoli patches surrounded by either bare ground or weedy vegetation.

With the aid of multivariate statistical techniques (MANOVA with General Linear Models), Banks and
Stark concluded that aphid populations respond to an interaction between vegetation diversity and pesticide
concentration, though it seemed that aphid response depended on the time lapse after pesticide disturbance.
They did not consider mathematical models of population dynamics in studying these external influences on
aphid populations.

In this paper we describe our efforts fitting population dynamics models to data from the Banks-Stark
field study. In particular, we first use ordinary least squares techniques to fit several autonomous ordinary
differential equation (ODE) models to each of the six datasets (two margin types each with three pesticide
spray levels). Motivated by both varying environmental factors and changes in dynamics due to pesti-
cide application, we also investigate the same set of models with piecewise constant and piecewise linear
time-varying coefficients in the corresponding non-autonomous ODEs. Parametrizing these time-varying
coefficients introduces additional degrees of freedom, but in general the non-autonomous systems provide
substantially better fits to the data. Specifically, chi-squared tests reveal that increasing degrees of freedom
to move from constant to time-varying coefficients yields statistically significant improvement in model fit.

For some of the models and datasets considered, we show how to use system sensitivity theory in con-
junction with nonlinear regression techniques from statistics to calculate standard errors for estimated pa-
rameters. We observe large variance estimates for the parameters, in part due to the large numbers of free
parameters considered and relatively small number of data points. We also report on numerical experiments
conducted in hopes of further explaining these large variances.

Finally, we examine two of our models that characterize the population dynamics and compare model
parameters under various margin types and spray levels. Our ultimate goal here is to understand the influence
of natural enemies or other margin-based factors separately from that of the insecticide.

2 Field study methods and data description

Banks and Stark conducted their full-factorial design field experiment during the summer of 1999 at a
Washington State University experimental farm in Puyallup, Washington. They established 2.5m square
plots each containing 16 broccoli plants and surrounded by 1m wide margins of either weedy vegetation
or bare ground. At three points in the growing season, broccoli in each type of margin plot was treated
with no pesticide spray, low concentration (15 g ai/ha; active ingredient per hectare) imidacloprid spray,
or high concentration (30 g ai/ha) imidacloprid spray. Two replicates of each of the six treatment/margin
combinations were placed in each of three fields (blocks) for a total of 36 experimental plots. Thus we have
data from six plots for each of the following condition pairs:

1. Bare margin, no spray;
2. Bare margin, low spray (15 g ai/ha);
3. Bare margin, high spray (30 g ai/ha);
4. Weedy margin, no spray;
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5. Weedy margin, low spray (15 g ai/ha); and
6. Weedy margin, high spray (30 g ai/ha).
Unwanted weedy vegetation was regularly removed by a combination of tractor and hand cultivation.

Plots were watered regularly throughout the growing season and dead or missing plants were replaced by
similar sized plants as needed. The study commenced with transplantation in late June; pesticide spraying
began in late July; and the study concluded in September. Imidacloprid spray was applied on July 23, August
13, and August 27, denoted by days 0, 21, and 35, respectively, in this paper.

At 4, 7, and 10 days after each pesticide spray (a total of 9 censuses), Banks and Stark randomly selected
a subset of 8 plants in each plot and visually censused the aphids. They counted all aphids on both sides
of broccoli leaves and all other surfaces. Average cylindrical plant volume in each plot was obtained mid-
season by measuring broccoli plant dimensions. Herbivore response to treatment manipulations was then
calculated by dividing the number of aphids on a plant by the mean plant volume for that plot. Thus the
census and volumetric measurements combined to yield a measure of aphid density (aphids per cubic meter)
for each plot. In both Banks and Stark [6] and our present effort, inter-block variability was reduced by
averaging the data across the six plots of each type (i.e., across three blocks, each with two replicates) to
obtain a mean measure of aphid density over time. We fit our ODE models to this mean density data.

The datasets can be viewed in Section 5.

3 Mathematical models

For this study, we consider several ordinary differential equation models of population dynamics. The mod-
els each involve a single state variableN(t), which denotes the aphid population density: (mean aphids)/m3.
The models all have the general form

dN(t)

dt
(t)
(

= Ṅ(t)
)

= B(N(t), t)N(t)−D(N(t), t)N(t), (M)

where dN
dt (equivalently Ṅ ) denotes the time derivative of the state variable N(t); B, a (potentially time-

and/or state-dependent) birth rate; and D, a (potentially time- and/or state-dependent) death rate. Note that
for Model 3 below we will let a = b− d denote a combined birth/death rate, when B = b and D = d.

The models used in our study (omitting the implicit time dependence of N and Ṅ ) are listed here.

1. Model 1 is the standard exponential model for birth. Here B = b(t) > 0 and D = 0 in (M) above.
The resulting ODE is

Ṅ = b(t)N. (1)

Because aphids reproduce by parthenogenesis (i.e., asexually) in the field, exponential growth is a
reasonable assumption for their population dynamics, especially when densities are below the carrying
capacity.

2. Model 2 is the standard exponential model for death. Here B = 0 and D = d(t) > 0 in (M) above,
resulting in

Ṅ = −d(t)N. (2)

This model assumes mortality due to pesticides and/or predation is the driving force behind aphid
population dynamics.

3. Model 3 is the standard exponential model for population dynamics, allowing for simultaneous expo-
nential birth and death. Here B = b(t) > 0 and D = d(t) > 0 in (M) above and we have

Ṅ = b(t)N − d(t)N = a(t)N. (3)
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4. Model 4 is similar to the exponential death model, but has a density-dependent birth rate that decreases
as the population increases. Here B = b(t)

N(t) , with b(t) > 0 and D = d(t) > 0 in (M) above, resulting
in

Ṅ = b(t)− d(t)N. (4)

5. Model 5 is similar to the exponential birth model, but has a density-dependent death rate that decreases
as the population increases. Here B = b(t) > 0 and D = d(t)

N(t) , with d(t) > 0 in (M) above, yielding

Ṅ = b(t)N − d(t). (5)

6. Model 6 is the standard logistic model for population dynamics (Verhulst equation), which incorpo-
rates a carrying capacity. Here B = b(t) > 0 and D = d(t)N(t) , with d(t) > 0 in (M) above, so we
have

Ṅ = b(t)N − d(t)N2. (6)

7. Finally, Model 7 is obtained from the negative of the logistic model, and thus has a threshold rather
than a carrying capacity. Here B = b(t)N(t) , with b(t) > 0 and D = d(t) > 0 in (M) above. The
resulting model is

Ṅ = b(t)N2 − d(t)N. (7)

Model 7 embodies the idea that above a population threshold, aphid populations grow exponentially,
and below the threshold populations decline to extinction. Since aphids feed by inserting their pro-
boscis into highly pressurized plant phloem, feeding and subsequent growth is facilitated by higher
densities of aphids feeding on plants. At lower densities, aphids have more difficulty overcoming
plant phloem pressure, which could lead to population decay and extinction, especially when they are
vulnerable to predation, pesticide sprays, etc.

The models above are shown with potentially time-varying parameters. In the constant coefficient case,
the parameters B(N(t), t) and D(N(t), t), do not explicitly depend on t and thus depend at most on N(t).
The constant coefficient models are recovered by making the coefficients b, d, and a constant in the above
ODEs. For more information on Models 6 and 7, see Boyce and DiPrima [7]. Note that in each case, a
solution to the ordinary differential equation is uniquely determined by imposing a single initial condition,
denoted N0 = N(t0), where t0 = 0 is the initial time considered in our study.

We first fit the models with constant coefficients (a, b, d) to the data, and then repeat, allowing one time-
varying coefficient (one of a(t), b(t), d(t)). For models with two parameters, we treat one parameter as
constant in time while allowing the other to be time-varying and then do the opposite. In the time-varying
cases, we first employ piecewise constant and then piecewise linear coefficients. Figure 1 depicts a sample
of the time varying coefficients considered.

For the piecewise constant case, the coefficient is constant ai on each time interval Ii, i = 1 . . . 3, where
Ii denotes the time interval after the ith spray and before the (i + 1)th (or the end of the study in the case
i = 3). Therefore in going from constant coefficients to piecewise constant coefficients we add two degrees
of freedom to the parameter set (from a single coefficient a to a1, a2, and a3, e.g.). The time-varying
coefficient is thus parametrized by a1, a2, a3:

a(t) =
3
∑

i=1

aiχIi
(t), (8)

where χ
Ii

(t) is the characteristic function which has value 1 on interval Ii and 0 elsewhere.
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a1
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350 21 49 time (t)
I1 I2 I3
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(e.g., a(t))
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a1

coefficient

350 21 49Ι1 Ι2 Ι3
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time (t)
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1 2 3

(e.g., a(t))

Figure 1: Example of time-varying coefficients. Left plot: piecewise constant, values ai are on intervals;
right plot: piecewise linear, values ai are at nodes. S denotes spray application and E denotes end of study.

For the piecewise linear case, the coefficient is linear on each time interval Ii, i = 1 . . . 3, where Ii is as
above. The piecewise linear time-varying coefficient can be parametrized by a1, a2, a3, and a4, the nodal
values of a(t) at the three sprays and the final time, respectively. Therefore

a(t) =
4
∑

i=1

aiφi(t), (9)

where φi(t) is the ith standard linear ‘hat’ spline basis function as shown in Figure 2. Hence in changing
from constant coefficients to piecewise linear coefficients we add three degrees of freedom to the parameter
set (from a single coefficient d to d1, d2, d3, and d4, e.g.).

35

S S S

21 49 time (t)0

1

E

φ2φ1 φ3 φ4

Ι1 Ι2 Ι3 (days)

21 3

Figure 2: Linear spline basis elements (‘hat’ functions). φi(t) has value 1 at node i ({Si}3i=1 or E) and 0 at
other nodes. S denotes spray application and E denotes the end of the study.

We expect better model fit (smaller residuals and better visual fit) using the non-autonomous models, due
to the larger number of degrees of freedom. Certainly the residuals will be at least as small with time-varying
coefficients as with constant coefficients. We use statistical analysis to determine whether any improvement
in fit is strictly due to the increased degrees of freedom, or is statistically significant given the increase in
degrees of freedom.

According to an in vitro study, application of imidacloprid selective pesticide affects both insect death
and birth rates [18]. However, few studies have been conducted on the sub-lethal effects of selective pesti-
cides (but see [19] and [20]). In addition, the pesticide used is most likely not detected by the aphids prior to
ingestion, so any change in death rates incurred after spraying is likely attributable to ingestion of the poison
and/or predation, rather than immigration into or emigration from the plot.

The relatively sudden injection of pesticide spray into the environment suggests consideration of piece-
wise constant rates, though such discontinuous rates may be more characteristic of traditional, broad spec-
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trum pesticides. Selective pesticides like the imidacloprid used in this study take longer to build up in the
system (they are slowly absorbed into the plant and then ingested by aphids), suggesting that smoother
piecewise linear rates may be more sensible. Piecewise linear rates are also more useful for modeling slow
changes in the environment. In the case of the Banks-Stark study, declining mean temperatures throughout
the study are most likely the principal source of such environmental variation.

From a Stark in vitro study [unpublished data], we calculate the following estimates of instantaneous
natural birth and death rates (i.e., the coefficients in the model Ṅ = (b − d)N ) for two species of aphid
commonly observed in the field: Myzus persicae and Brevicoryne brassicae. In gathering the data reported
on in this paper, Banks and Stark observed greater abundance of M. persicae (green peach aphid). These
rates, given in Table 1, will be used later for comparison purposes.

species birth rate b death rate d
M. persicae 0.209869565 0.001059425
B. brassicae 0.250791904 0.001843502
mean 0.230330735 0.001451464

Table 1: Empirical in vitro instantaneous birth and death rates for two species of aphid commonly observed
during the field study.

4 Parameter estimation and statistical techniques

4.1 Least squares problem formulation and solution

As stated above, the unique solution of each ODE model depends on an initial condition N0. Since we do
not wish to give considerably more weight to the first observation, we allow the initial condition N0 to be a
free parameter (to be estimated) at time t0 = 0 days. We therefore have the following times and events in
our experiment. The event ‘S’ denotes spray and ‘C’, collection of census data. Observations are denoted
by Ni at time ti days.

time (days) 0 4 7 10 21 25 28 31 35 39 42 45
event S C C C S C C C S C C C

I.C. or obs. N0 N1 N2 N3 N4 N5 N6 N7 N8 N9

We fit each of the models described in Section 3 to each of the six datasets, using an ordinary least
squares cost functional to measure model fit to data. The ordinary least squares inverse problem can be
stated as follows.

Let q denote the vector of parameters in the model considered, e.g., q = [b, d,N0] for constant rates or
q = [b, d1, d2, d3, N0] for piecewise constant time-varying rates as described in Section 3. Then the cost
function J(q) is given by

J(q) =
9
∑

i=1

(N(ti; q)−Ni)
2, (10)

where N(ti; q) and Ni denote the model solution (dependent on the choice of parameters) and observation
at time ti, respectively. Consequently, the inverse problem consists of minimizing the function J(q) over
the space of admissible parameters q ∈ Qad and thus finding the best model fit to the data. For most of the
models, we would ideally take Qad to be the entire positive half-space, but in several cases we reduce the
parameter space to some subset of R

p+, where p is the dimension of the parameter space (length of q) to
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make computation feasible. Specifically we impose lower and upper bound constraints l and u on some of
the components of q: li ≤ qi ≤ ui.

When fitting the models with constant or piecewise constant coefficients, the availability of closed form
analytical ODE solutions makes computation considerably faster. Employing piecewise linear coefficients
prohibits straightforward analytical solution, so we solve the ODEs by invoking the Matlab ODE solver
ode45, an adaptive explicit Runge-Kutta solver.

We minimize the cost function (10) with a combination of sampling and gradient-based methods. We
first apply the gblSolve code which is freely available for educational use with Matlab and is also part of the
commercial package TOMLAB [13]. This code employs a sampling-based algorithm for global optimization
with bound constraints and is based on the DIRECT algorithm [14]. The resulting minimizer from gblSolve
serves as one of several initial iterates for the bound constraint least squares optimizer, Matlab’s lsqnonlin,
which refines the choice of optimal parameters. The algorithm lsqnonlin is a Gauss-Newton method which
switches to Levenberg-Marquardt when parameter step sizes are small.

The increased number of degrees of freedom in the models with time-varying coefficients make them
more difficult to fit. However, the optimal coefficients from the constant coefficient case and the results
of the sampling algorithm prove good initial iterates for the least squares optimization to find piecewise
defined coefficients in nearly all cases. We note that the optimal parameters reported in the next section are
not unique, but in many cases at least provide good fit to data and reasonable residuals.

4.2 Statistical significance testing

We test the significance of adding additional degrees of freedom to the inverse problem, i.e., using piecewise
constant (s = 2 additional degrees of freedom) or piecewise linear (s = 3 additional degrees of freedom) co-
efficients, by comparing the cost function values at optimal parameters for constant coefficients (Jcons) and
those using piecewise coefficients (Jpw). For each model we compare the improvement in using the piece-
wise constant (pwc) or piecewise linear (pwl) coefficient (non-autonomous) model over the corresponding
autonomous model. In particular, we use the test statistic

Un =
n
[

Jcons(q
∗
cons)− Jpw(q∗pw)

]

Jpw(q∗pw)
, (11)

where n = 9 data points, and q∗cons and q∗pw denote optimal parameters for the two cases, in a χ2 test with
the null hypothesis that constant coefficients are sufficient to fit the data. By computing the tail probability
α beyond U9 in a χ2(s) distribution (s denotes number of additional degrees of freedom), we determine
the maximum level of confidence P = (1 − α) at which we can reject the null hypothesis. This allows
us in many cases to suggest with confidence that the improvement in model fit achieved with time-varying
coefficients is significant. Banks and Fitzpatrick developed theoretical foundations for and applied this
method to similar problems in 1990 [2] and additional examples can be found in [3].

4.3 Standard error analysis

Any estimate of model parameters from data should be accompanied by an estimate of uncertainty. We
illustrate one approach to estimating variance with two of the models under investigation here. For Models
3 and 6 (with constant and piecewise linear coefficients), we assess the variance in the estimated model
parameters q∗ by employing sensitivity equations to compute standard errors.

To perform this analysis, we first compute the sensitivity of the ODE model solution (denoted by y =
N(t; q)) to the estimated parameters q ∈ R

p. Letting f(t, y; q) denote the right side of the ODE and
y0 = y(0) the initial condition at time t = 0, we can write the model as

7



ẏ(t) = f(t, y; q) (12)

y(0) = y0. (13)

Since we parametrize any time-varying coefficients, we can formally differentiate (12) and (13) with
respect to q and interchange the order of the time and parameter derivatives as outlined in [11] and [12]. We
thus obtain a p-dimensional system of differential equations for the sensitivities yq(t; q):

d

dt

(

∂y(t)

∂q

)

=
∂f

∂y

∂y(t)

∂q
+
∂f

∂q
(14)

with initial condition
∂y(t)

∂q
(0) =

∂y0

∂q
, (15)

which has components either 0 or 1, depending on whether the derivative is with respect to a model param-
eter or initial condition, respectively.

To solve for yq(t; q), we augment the original differential equation model with the sensitivity equation
system (14) to obtain a (p+1)-dimensional system which we solve forward in time. For these computations
we utilize the Matlab stiff ODE solver ode15s. Coupling the original ODE model and sensitivity equations
in this manner ensures that the solution data for y(t) is sufficiently accurate to solve the sensitivity system
to the desired accuracy.

EXAMPLE: Consider Model 6 with piecewise linear coefficient b(t). In this case, the ODE
model is

ẏ(t) =

(

4
∑

i=1

biφi(t)

)

y(t)− d y(t)2

y(0) = y0.

with parameters q = [b1, b2, b3, b4, d, y0] (p = 6). The augmented ODE (sensitivity) system in
this case is

d

dt



















y(t)














·
·

[

∂y(t)
∂q

]

·
·

































=





















b(t)y(t)− dy(t)2

(b(t)− 2dy(t))















·
·

[

∂y(t)
∂q

]

·
·















+

















y(t)φ1(t)
y(t)φ2(t)
y(t)φ3(t)
y(t)φ4(t)
−y(t)2

0





































with initial condition



















y(0)

·
·

[

∂y(0)
∂q

]

·
·



















=





















y0

0
0
0
0
0
1





















.
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We compute the sensitivities yq(t; q) at the observation times t = ti, i = 1 . . . 9, using for q the estimated
parameter vector q̂ = q∗, which is considered our best estimate for the true parameters, and form the 9× p

sensitivity matrix

Yq(q) =







yTq (t1; q)
...

yTq (t9; q)






. (16)

Under the standard assumptions of classical nonlinear regression theory, together with the assumption that
measurement process errors εi are independently distributed and have constant variance σ2 (specifically
εi ∼ N (0, σ2) where εi is the difference between observation and model at time ti), we expect the OLS
estimate q̂ = q∗ to be approximately normally distributed (at least asymptotically). Specifically, for large
samples,

q̂ = q∗ ∼ N
[

q0, σ
2
{

Y T
q (q0)Yq(q0)

}−1
]

, (17)

where q0 is the true vector of parameters and σ2
{

Y T
q (q0)Yq(q0)

}−1, the true covariance matrix (see [9],
Chapter 2).

Having no better approximation to the true values q0 and σ2 available, we follow standard statistical
practice and substitute the computed estimate q∗ for q0 and approximate σ2 by

σ̂2 =
1

9− p

9
∑

j=1

(y(tj ; q
∗)− yj)

2,

in (17) to obtain standard errors for our estimates. In particular if

C = σ̂2
{

Y T
q (q∗)Yq(q

∗)
}−1

from (17) above (taken with the described substitutions), we take
√
Ckk, to get the standard error for param-

eter component qk.

5 Model fitting results

In this section we present a rather exhaustive set of results from our model fitting. Each dataset (correspond-
ing to a particular margin and spray combination) appears in its own subsection, wherein the following
appear in order:

1. A table summarizing the optimal parameters, cost, and test statistics for constant and piecewise con-
stant parameters (top) and constant and piecewise linear parameters (bottom). Note that for simplicity
in the tables, rows corresponding to b also contain the data for the parameter a for Model 3. Note
also that we do not fit the negative logistic model (Model 7) for the case of piecewise linear coeffi-
cients, since for this particular model, the optimizer often strays into a part of parameter space where
numerical ODE solution fails (specifically, the solution diverges to infinity).

2. Three figures showing the fits for (a) Models 1–3, (b) Models 4 and 5, and (c) Models 6 and 7 with
constant and piecewise constant coefficients.

3. Three figures showing the fits for (a) Models 1–3, (b) Models 4 and 5, and (c) Model 6 with constant
and piecewise linear coefficients.

4. A summary table for the dataset, showing the cost function values and resulting test statistics.
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5. Some comments on the model fits to data for the dataset at hand.

In studying these results, recall that in the time-varying case for models with two coefficients, only one
coefficient was taken to be time-varying and the other was held fixed (constant). Also, note that each graph
showing the optimal model fit to data includes the corresponding cost function value (J) at the optimal
parameters as part of the title.

5.1 Dataset 1: Bare margin, no spray

coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons b | a 1.8256e-12 n/a -1.1919e-02 3.9127e-07 5.6894e-02 2.1262e-09 2.6150e-04
d n/a 1.1919e-02 n/a 1.1919e-02 2.1662e+01 3.6905e-05 9.5972e-02
N0 295 395 395 395 366 396 363
J 5.2730e+04 2.6554e+04 2.6554e+04 2.6554e+04 2.0647e+04 2.8331e+04 1.9926e+04

pwc b1| a1 9.1295e-14 1.6415e-02 8.2687e+01 4.8078e-02 2.2503e-01 2.7031e-04
b(t) b2| a2 9.1315e-14 -5.0672e-02 4.2202e+01 3.5589e-09 1.0400e-01 1.9307e-04
or b3| a3 9.1279e-14 -4.1650e-03 3.4377e+01 6.2495e-02 8.1183e-02 3.9948e-04
a(t) d n/a n/a n/a 1.7606e-01 1.4081e+01 4.6123e-04 9.7158e-02

N0 295 316 122 337 187 362
J 5.2730e+04 1.5651e+04 1.1602e+04 1.6825e+04 1.1092e+04 1.7942e+04
U 0.00 6.27 11.60 2.04 13.99 1.00

1 − α 0.000 0.956 0.997 0.640 0.999 0.392
pwc b n/a 6.4407e+01 1.0924e-02 1.7696e-01 3.4367e-05
d(t) d1 3.0316e-14 1.2438e-01 9.7131e-07 3.2862e-04 1.1374e-06

d2 2.5052e-02 2.4689e-01 1.7568e+01 6.8698e-04 5.7943e-02
d3 n/a 2.3795e-02 n/a 3.1159e-01 2.6752e+00 8.9685e-04 1.3286e-02
N0 363 156 328 203 328
J 1.8592e+04 1.1621e+04 1.6343e+04 1.0974e+04 1.6093e+04
U 3.85 11.56 2.37 14.23 2.14

1 − α 0.854 0.997 0.694 0.999 0.658

cons b | a 7.1900e-12 n/a -1.1919e-02 4.5435e-05 5.7187e-02 4.8430e-07
d n/a 1.1920e-02 n/a 1.1927e-02 2.1754e+01 3.6550e-05 –
N0 295 395 395 395 366 394
J 5.2730e+04 2.6554e+04 2.6554e+04 2.6554e+04 2.0647e+04 2.8333e+04

pwl b1| a1 3.6050e-13 1.1232e-01 4.9765e+01 1.8276e-01 1.5264e-01
b(t) b2| a2 3.5950e-13 -4.3865e-02 1.4570e-03 7.7092e-05 1.1703e-02
or b3| a3 3.5962e-13 -2.8820e-02 9.9709e-01 6.5141e-02 2.2547e-04
a(t) b4| a4 3.6058e-13 7.4932e-03 9.4029e+00 1.2153e-01 2.9598e-02

d n/a n/a n/a 3.5115e-02 2.2113e+01 1.2550e-04 –
N0 295 199 145 216 189
J 5.2730e+04 1.0123e+04 1.0514e+04 1.0054e+04 1.0193e+04
U 0.00 14.61 13.73 9.48 16.02

1 − α 0.000 0.998 0.997 0.976 0.999
pwl b n/a 3.4244e+01 1.0776e-01 1.1665e-01
d(t) d1 4.3499e-13 2.6731e-07 9.4160e-01 4.0952e-07

d2 3.7702e-03 1.1831e-01 6.2967e+01 3.8839e-04
d3 3.8183e-02 1.6982e-01 3.0803e+01 5.8297e-04
d4 n/a 1.7291e-11 n/a 1.7614e-01 1.9366e+01 6.4757e-04 –
N0 359 172 220 184
J 1.8780e+04 1.0497e+04 1.0641e+04 1.0220e+04
U 3.73 13.77 8.46 15.95

1 − α 0.707 0.997 0.963 0.999

Table 2: Bare margin, no spray: Optimal parameters and cost for constant versus piecewise constant coeffi-
cients for all models (top) and constant versus piecewise linear coefficients (bottom) for Models 1–6.
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Figure 3: Fit of exponential models to data from bare margin, no spray. Coefficients are either constant
(left column) or piecewise constant (right column). Rows 1–3 correspond to exponential Models 1–3,
respectively (birth, death, combined birth/death).
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Figure 4: Fit of Models 4 and 5 to data from bare margin, no spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise constant coefficient b(t), and piecewise
constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN−d, again with results
for constant and piecewise constant coefficients.
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Figure 5: Fit of logistic Models 6 and 7 to data from bare margin, no spray. Row 1 corresponds to the
model Ṅ = bN − dN2, with results for constant coefficients, piecewise constant coefficient b(t), and
piecewise constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN2 − dN ,
again with results for constant coefficients and piecewise constant coefficients.
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Figure 6: Fit of exponential models to data from bare margin, no spray. Coefficients are either constant
(left column) or piecewise linear (center column) and pwl coefficients are shown in the right column. Rows
1–3 correspond to exponential Models 1–3, respectively (birth, death, combined birth/death).
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Figure 7: Fit of Models 4 and 5 to data from bare margin, no spray. Row 1 corresponds to the model Ṅ =
b−dN , with results for constant coefficients, piecewise linear coefficient b(t), piecewise linear coefficient
d(t), and the resulting coefficients from left to right. Row 2 corresponds to the model Ṅ = bN − d, with
the same columns.
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Figure 8: Fit of logistic Model 6 to data from bare margin, no spray. Row 1 corresponds to the model
Ṅ = bN − dN2, with results for constant coefficients, piecewise linear coefficient b(t), and piecewise
linear coefficient d(t) from left to right. Row 2 shows the resulting coefficients.
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coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons J 5.2730e+04 2.6554e+04 2.6554e+04 2.6554e+04 2.0647e+04 2.8331e+04 1.9926e+04
pwc J 5.2730e+04 1.5651e+04 1.1602e+04 1.6825e+04 1.1092e+04 1.7942e+04
b(t) U 0.00 n/a 6.27 11.60 2.04 13.99 1.00

1 − α 0.000 0.956 0.997 0.640 0.999 0.392
pwc J 1.8592e+04 1.1621e+04 1.6343e+04 1.0974e+04 1.6093e+04
d(t) U n/a 3.85 n/a 11.56 2.37 14.23 2.14

1 − α 0.854 0.997 0.694 0.999 0.658

cons J 5.2730e+04 2.6554e+04 2.6554e+04 2.6554e+04 2.0647e+04 2.8333e+04 –
pwl J 5.2730e+04 1.0123e+04 1.0514e+04 1.0054e+04 1.0193e+04
b(t) U 0.00 n/a 14.61 13.73 9.48 16.02 –

1 − α 0.000 0.998 0.997 0.976 0.999
pwl J 1.8780e+04 1.0497e+04 1.0641e+04 1.0220e+04
d(t) U n/a 3.73 n/a 13.77 8.46 15.95 –

1 − α 0.707 0.997 0.963 0.999

Table 3: Bare margin, no spray: Summary of cost function values and statistics.

Comments

• The exponential birth Model 1 fails to fit the data at all, regardless of incorporation of time-varying
coefficients. Simple exponential death (Model 2) fits better, but we do not observe a statistically
significant reduction in cost function when incorporating time-varying coefficients.

• Model 3 (exponential birth/death) performs very well when time-varying coefficients are used and
their incorporation is statistically significant at the 95% confidence level (piecewise constant) and 99%
confidence level (piecewise linear). Piecewise linear coefficients provide a much more eye-pleasing
fit to the data.

• Of those remaining, Models 4, 5, and 6 with piecewise linear coefficients provide the best fit (smallest
residual). In these cases, similar results are obtained for time-varying b(t) and d(t) and the addition
of the time-varying coefficients proved statistically significant.

• Note that for Model 5, piecewise linear coefficients d(t) substantially outperformed piecewise linear
coefficients b(t). In several other cases (though not all) d(t) did better.

• In increasing order of least squares residual, the top models are: Model 3 (pwl) and Model 5 (pwl b);
Model 6 (pwl b or d); Model 4 (pwl b or d); and Model 5 (pwl d). Some of the piecewise constant
models are close behind.

• In general the smoother fit to data afforded by the piecewise linear coefficients seems better, an obser-
vation that carries across many of the datasets.
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5.2 Dataset 2: Bare margin, low spray (15 g ai/ha)

coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons b | a 2.0250e-12 n/a -3.0374e-03 6.0535e+01 1.3153e-01 4.7506e-01 7.6457e-07
d n/a 3.0374e-03 n/a 3.4554e-01 2.4256e+01 2.6964e-03 1.3749e-03
N0 168 181 181 0 184 44 171
J 3.3972e+04 3.3400e+04 3.3400e+04 3.1845e+04 2.9606e+04 3.1578e+04 3.3665e+04

pwc b1| a1 3.8959e-03 1.3464e-02 4.7364e+01 6.8900e-02 4.1750e-01 1.0270e-04
b(t) b2| a2 4.7982e-12 5.7674e-03 4.2576e+01 5.4058e-02 3.0388e-01 1.0000e-08
or b3| a3 2.4463e-14 -6.9067e-02 2.2399e+01 4.1668e-10 1.7045e-01 1.0000e-08
a(t) d n/a n/a n/a 2.1076e-01 1.0137e+01 1.5364e-03 1.1592e-02

N0 157 149 0 159 22 171
J 3.3788e+04 2.5052e+04 2.0878e+04 2.6216e+04 1.8391e+04 2.9559e+04
U 0.05 3.00 4.73 1.16 6.45 1.25

1 − α 0.024 0.777 0.906 0.441 0.960 0.465
pwc b n/a 4.5573e+01 1.6787e-02 3.8474e-01 6.0744e-05
d(t) d1 6.2478e-12 1.9468e-01 2.2374e-06 1.0826e-03 2.0720e-08

d2 1.5129e-13 2.2624e-01 4.2800e+00 1.9871e-03 3.6173e-03
d3 n/a 4.8032e-02 n/a 3.7782e-01 1.1132e+01 3.0940e-03 8.1449e-02
N0 185 0 146 19 154
J 2.8057e+04 2.0410e+04 2.5669e+04 1.6874e+04 2.5269e+04
U 1.71 5.04 1.38 7.84 2.99

1 − α 0.576 0.920 0.498 0.980 0.776

cons b | a 2.5252e-08 n/a -3.0353e-03 6.0137e+01 1.8099e-01 4.6044e-01
d n/a 3.0378e-03 n/a 3.4319e-01 3.3725e+01 2.6087e-03 –
N0 168 181 181 0 186 48
J 3.3972e+04 3.3400e+04 3.3400e+04 3.1845e+04 2.9342e+04 3.1560e+04

pwl b1| a1 2.3707e-02 1.3174e-01 3.4034e+01 2.1311e-01 3.9487e-01
b(t) b2| a2 1.1563e-09 -3.1967e-02 5.6314e+00 4.8078e-06 1.4407e-01
or b3| a3 2.1590e-09 -1.5505e-02 3.5215e+00 4.0083e-02 1.2657e-01
a(t) b4| a4 2.2143e-10 -8.0707e-02 1.4695e-02 2.4090e-02 5.7718e-07

d n/a n/a n/a 4.6647e-02 9.9083e+00 7.9110e-04 –
N0 136 84 1 87 22
J 3.3096e+04 2.1561e+04 2.1264e+04 2.1675e+04 1.8950e+04
U 0.24 4.94 4.48 3.18 5.99

1 − α 0.029 0.824 0.786 0.636 0.888
pwl b n/a 2.7680e+01 1.0840e-01 2.2110e-01
d(t) d1 2.8235e-07 1.9038e-06 2.0837e-01 1.1753e-08

d2 1.5570e-07 1.5439e-01 2.7443e+01 1.2122e-03
d3 6.0576e-03 1.5257e-01 2.4820e+01 1.0543e-03
d4 n/a 1.0895e-01 n/a 3.8542e-01 1.1829e+01 3.5480e-03 –
N0 183 5 98 44
J 2.9226e+04 2.0279e+04 2.2826e+04 1.7237e+04
U 1.29 5.13 2.57 7.48

1 − α 0.267 0.838 0.537 0.942

Table 4: Bare margin, low spray: Optimal parameters and cost for constant versus piecewise constant
coefficients for all models (top) and constant versus piecewise linear coefficients (bottom) for Models 1–6.
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Figure 9: Fit of exponential models to data from bare margin, low spray. Coefficients are either constant
(left column) or piecewise constant (right column). Rows 1–3 correspond to exponential models 1–3,
respectively (birth, death, combined birth/death).
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Figure 10: Fit of Models 4 and 5 to data from bare margin, low spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise constant coefficient b(t), and piecewise
constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN−d, again with results
for constant and piecewise constant coefficients.
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Figure 11: Fit of logistic Models 6 and 7 to data from bare margin, low spray. Row 1 corresponds to
the model Ṅ = bN − dN2, with results for constant coefficients, piecewise constant coefficient b(t), and
piecewise constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN2 − dN ,
again with results for constant coefficients and piecewise constant coefficients.
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Figure 12: Fit of exponential models to data from bare margin, low spray. Coefficients are either constant
(left column) or piecewise linear (center column) and pwl coefficients are shown in the right column. Rows
1–3 correspond to exponential Models 1–3, respectively (birth, death, combined birth/death).
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Figure 13: Fit of Models 4 and 5 to data from bare margin, low spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise linear coefficient b(t), piecewise linear
coefficient d(t), and the resulting coefficients from left to right. Row 2 corresponds to the model Ṅ =
bN − d, with the same columns.
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Figure 14: Fit of logistic Model 6 to data from bare margin, low spray. Row 1 corresponds to the model
Ṅ = bN − dN2, with results for constant coefficients, piecewise linear coefficient b(t), and piecewise
linear coefficient d(t) from left to right. Row 2 shows the resulting coefficients.
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coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons J 3.3972e+04 3.3400e+04 3.3400e+04 3.1845e+04 2.9606e+04 3.1578e+04 3.3665e+04
pwc J 3.3788e+04 2.5052e+04 2.0878e+04 2.6216e+04 1.8391e+04 2.9559e+04
b(t) U 0.05 n/a 3.00 4.73 1.16 6.45 1.25

1 − α 0.024 0.777 0.906 0.441 0.960 0.465
pwc J 2.8057e+04 2.0410e+04 2.5669e+04 1.6874e+04 2.5269e+04
d(t) U n/a 1.71 n/a 5.04 1.38 7.84 2.99

1 − α 0.576 0.920 0.498 0.980 0.776

cons J 3.3972e+04 3.3400e+04 3.3400e+04 3.1845e+04 2.9342e+04 3.1560e+04 –
pwl J 3.3096e+04 2.1561e+04 2.1264e+04 2.1675e+04 1.8950e+04
b(t) U 0.24 n/a 4.94 4.48 3.18 5.99 –

1 − α 0.029 0.824 0.786 0.636 0.888
pwl J 2.9226e+04 2.0279e+04 2.2826e+04 1.7237e+04
d(t) U n/a 1.29 n/a 5.13 2.57 7.48 –

1 − α 0.267 0.838 0.537 0.942

Table 5: Bare margin, low spray: Summary of cost function values and statistics.

Comments

• Again, the exponential birth Model 1 fails to fit the data at all, either with constant or time-varying
coefficients. For this dataset, exponential death performs a little better, but we still do not observe a
statistically significant reduction in cost function when incorporating time-varying coefficients.

• Model 3 (exponential birth/death) performs decently with piecewise linear coefficients, though the
reduction in cost is not statistically significant (p-value 0.824). Piecewise linear coefficients provide
a much more eye-pleasing fit to data.

• To the eye, none of the models fit especially well, and we do not observe substantial improvement in
moving to more complex models. In fact many of the models produce curves with similar character-
istics.

• In increasing order of least squares residual, the top five models were: Model 6 (pwc d); Model 6 (pwl
d); Model 6 (pwc b); Model 6 (pwl b); and Model 4 (pwc d, pwl d). For this dataset, time-varying
coefficients d(t) seem to be important, as do models with a stronger decay term.

• The logistic model (6) is the only model where significant reduction in cost function value occurs
when adding time-varying coefficients. Here the piecewise constant and piecewise linear coefficients
perform similarly. In this case, making the coefficient d(t) time-varying makes a greater difference.

However, the penultimate conclusion is that the dataset itself seems an outlier when compared to model
fits achieved with the other datasets.
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5.3 Dataset 3: Bare margin, high spray (30 g ai/ha)

coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons b | a 4.5924e-14 n/a -9.8760e-03 8.2936e-07 1.1922e-01 2.0299e-09 3.6788e-06
d n/a 9.8758e-03 n/a 9.8779e-03 2.4558e+01 4.9736e-05 1.9885e-03
N0 169 216 216 216 205 212 161
J 3.8614e+04 3.2146e+04 3.2146e+04 3.2146e+04 2.2070e+04 3.2994e+04 3.8633e+04

pwc b1| a1 2.4501e-14 2.2632e-02 1.0552e+02 3.4976e-01 1.6401e+00 1.3200e-04
b(t) b2| a2 2.4501e-14 -1.6214e-02 1.2550e+02 2.4203e-01 1.9446e+00 1.0000e-08
or b3| a3 2.4501e-14 -1.1007e-01 4.7118e+01 6.4372e-01 7.8234e-01 1.0000e-08
a(t) d n/a n/a n/a 5.4468e-01 6.3018e+01 8.5169e-03 1.3154e-02

N0 169 156 0 180 2 161
J 3.8614e+04 1.3397e+04 9.2500e+03 1.1655e+04 9.3546e+03 2.7631e+04
U 0.00 12.59 22.28 8.04 22.74 3.58

1 − α 0.000 0.998 1.000 0.982 1.000 0.833
pwc b n/a 6.2436e+01 2.9248e-01 3.3735e-01 1.0085e-04
d(t) d1 3.9951e-13 2.9747e-01 5.6843e+01 1.5778e-03 5.7396e-06

d2 3.4107e-12 2.6465e-01 7.3294e+01 1.4458e-03 3.9238e-02
d3 n/a 1.1328e-01 n/a 7.0933e-01 2.2259e+01 4.0155e-03 1.2113e-01
N0 204 44 194 88 163
J 1.6671e+04 8.2307e+03 1.1031e+04 8.4491e+03 1.3712e+04
U 8.35 26.15 9.01 26.14 16.36

1 − α 0.985 1.000 0.989 1.000 1.000

cons b | a 8.8357e-11 n/a -9.8693e-03 1.1533e-05 1.1743e-01 2.1707e-07
d n/a 9.8756e-03 n/a 9.8862e-03 2.4186e+01 5.0075e-05 –
N0 169 216 216 216 205 212
J 3.8614e+04 3.2146e+04 3.2146e+04 3.2146e+04 2.2074e+04 3.2993e+04

pwl b1| a1 4.4179e-12 2.4836e-02 2.4737e+01 1.0210e-01 1.4878e-01
b(t) b2| a2 4.4191e-12 2.0486e-02 3.1409e+01 1.5955e-01 1.4464e-01
or b3| a3 4.4208e-12 -1.0502e-01 3.5827e-03 1.5334e-02 7.9690e-07
a(t) b4| a4 4.4182e-12 1.1666e-01 2.2753e+01 6.3370e-01 6.0767e-02

d n/a n/a n/a 1.0910e-01 2.4353e+01 5.2798e-04 –
N0 169 154 122 204 114
J 3.8614e+04 1.1290e+04 1.0724e+04 9.5268e+03 1.2420e+04
U 0.00 16.62 17.98 11.85 14.91

1 − α 0.000 0.999 1.000 0.992 0.998
pwl b n/a 4.6702e+00 1.2392e-01 4.4446e+00
d(t) d1 3.1732e-08 3.1028e-07 1.4250e+01 2.6468e-02

d2 2.9956e-14 2.5643e-05 2.7196e+01 1.9865e-02
d3 5.1669e-02 1.2357e-01 3.5305e+01 1.8867e-02
d4 n/a 2.9376e-02 n/a 2.4074e-06 2.8641e-07 8.9076e-02 –
N0 210 149 153 702
J 1.9002e+04 1.1774e+04 1.0619e+04 1.1604e+04
U 6.23 15.57 9.71 16.59

1 − α 0.899 0.999 0.979 0.999

Table 6: Bare margin, high spray: Optimal parameters and cost for constant versus piecewise constant
coefficients for all models (top) and constant versus piecewise linear coefficients (bottom) for Models 1–6.
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Figure 15: Fit of exponential models to data from bare margin, high spray. Coefficients are either constant
(left column) or piecewise constant (right column). Rows 1–3 correspond to exponential Models 1–3,
respectively (birth, death, combined birth/death).
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Figure 16: Fit of Models 4 and 5 to data from bare margin, high spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise constant coefficient b(t), and piecewise
constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN−d, again with results
for constant and piecewise constant coefficients.
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Figure 17: Fit of logistic Models 6 and 7 to data from bare margin, high spray. Row 1 corresponds to
the model Ṅ = bN − dN2, with results for constant coefficients, piecewise constant coefficient b(t), and
piecewise constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN2 − dN ,
again with results for constant coefficients and piecewise constant coefficients.
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Figure 18: Fit of exponential models to data from bare margin, high spray. Coefficients are either constant
(left column) or piecewise linear (center column) and pwl coefficients are shown in the right column. Rows
1–3 correspond to exponential Models 1–3, respectively (birth, death, combined birth/death).

25



0 50
0

50

100

150

200

250

300
cons, J=3.21e+04

Me
an 

aph
ids

 / m
3

0 50
0

50

100

150

200

250

300
pwl b, J=1.07e+04

0 50
0

50

100

150

200

250

300
pwl d, J=1.18e+04

0 50
0

10

20

30

40
constants b; d

0 50
0

0.05

0.1

0.15

0 50
0

50

100

150

200

250

300
cons, J=2.21e+04

time t

Me
an 

aph
ids

 / m
3

0 50
0

50

100

150

200

250

300
pwl d, J=1.06e+04

time t
0 50

−50

0

50

100

150

200

250

300
pwl b, J=9.53e+03

0 50
0

0.5

1

0 50
0

10

20

30

40

time t

Figure 19: Fit of Models 4 and 5 to data from bare margin, high spray. Row 1 corresponds to the
model Ṅ = b − dN , with results for constant coefficients, piecewise linear coefficient b(t), piecewise
linear coefficient d(t), and the resulting coefficients from left to right. Row 2 corresponds to the model
Ṅ = bN − d, with the same columns.
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Figure 20: Fit of logistic Model 6 to data from bare margin, high spray. Row 1 corresponds to the model
Ṅ = bN − dN2, with results for constant coefficients, piecewise linear coefficient b(t), and piecewise
linear coefficient d(t) from left to right. Row 2 shows the resulting coefficients.
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coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons J 3.8614e+04 3.2146e+04 3.2146e+04 3.2146e+04 2.2070e+04 3.2994e+04 3.8633e+04
pwc J 3.8614e+04 1.3397e+04 9.2500e+03 1.1655e+04 9.3546e+03 2.7631e+04
b(t) U 0.00 n/a 12.59 22.28 8.04 22.74 3.58

1 − α 0.000 0.998 1.000 0.982 1.000 0.833
pwc J 1.6671e+04 8.2307e+03 1.1031e+04 8.4491e+03 1.3712e+04
d(t) U n/a 8.35 n/a 26.15 9.01 26.14 16.36

1 − α 0.985 1.000 0.989 1.000 1.000

cons J 3.8614e+04 3.2146e+04 3.2146e+04 3.2146e+04 2.2074e+04 3.2993e+04 –
pwl J 3.8614e+04 1.1290e+04 1.0724e+04 9.5268e+03 1.2420e+04
b(t) U 0.00 n/a 16.62 17.98 11.85 14.91 –

1 − α 0.000 0.999 1.000 0.992 0.998
pwl J 1.9002e+04 1.1774e+04 1.0619e+04 1.1604e+04
d(t) U n/a 6.23 n/a 15.57 9.71 16.59 –

1 − α 0.899 0.999 0.979 0.999

Table 7: Bare margin, high spray: Summary of cost function values and statistics.

Comments

• Again, the exponential birth model fails to fit the data at all, regardless of incorporation of time-
varying coefficients. The exponential birth model does better, and we observe a statistically significant
reduction in cost function value when incorporating piecewise constant coefficients (p-value 0.985),
but not piecewise linear (p-value 0.899).

• Model 3 (exponential birth/death) performs very well when time-varying coefficients are used and
their incorporation is statistically significant at the 99% confidence level (for both types). Piecewise
linear coefficients provide a much more eye-pleasing fit to data—the trajectories based on piecewise
constant coefficients are probably not realistic—they are not smooth enough.

• Of the remaining models, Models 4 and 6 for piecewise constant coefficients and Model 5 for piece-
wise linear coefficients leave the smallest least squares residuals. For Models 4, 5, and 6 we see
statistically significant cost function reduction with all types of time-varying coefficients.

• In increasing order of least squares residual, the top models are: Model 4 (pwc d); Model 6 (pwc
d); Model 4 (pwc b); Model 6 (pwc b); Model 5 (pwl b). Models 4 and 5 with piecewise linear
coefficients did decently as well. Again, despite the improved residual performance of piecewise
constant coefficients, the resulting trajectories are less than satisfactory.

• Note that for the top models, piecewise constant coefficients d(t) always slightly outperformed (lower
residuals) piecewise constant b(t). In two of three piecewise linear cases, b(t) did better. Hence in
these models, there is no clear preference for nonconstant d versus nonconstant b.
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5.4 Dataset 4: Weedy margin, no spray

coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons b | a 9.8004e-12 n/a -2.1543e-02 8.1953e-08 6.5262e-02 1.6842e-09 5.4344e-04
d n/a 2.1543e-02 n/a 2.1540e-02 2.6198e+01 7.0315e-05 1.5995e-01
N0 265 442 442 442 384 453 294
J 1.2048e+05 4.5489e+04 4.5489e+04 4.5489e+04 2.1328e+04 5.3614e+04 4.3110e+04

pwc b1| a1 2.5147e-14 2.3544e-02 3.7966e+01 7.2213e-02 1.4225e-01 5.5449e-04
b(t) b2| a2 2.3373e-14 -7.5684e-02 5.8976e-06 2.7080e-08 1.4619e-02 2.7780e-04
or b3| a3 2.3380e-14 -5.2870e-02 1.2700e+00 1.3430e-01 1.0000e-09 9.1028e-04
a(t) d n/a n/a n/a 6.8451e-02 2.2408e+01 2.6676e-04 1.6105e-01

N0 265 311 259 344 252 294
J 1.2048e+05 1.1893e+04 1.1568e+04 1.2602e+04 1.4430e+04 2.7067e+04
U 0.00 25.42 26.39 6.23 24.44 5.33

1 − α 0.000 1.000 1.000 0.956 1.000 0.931
pwc b n/a 1.5291e+01 1.5299e-02 6.7662e-02 4.9393e-05
d(t) d1 4.2229e-14 9.1163e-03 2.3272e-06 8.0262e-05 4.1299e-08

d2 3.6283e-02 1.2106e-01 2.6406e+01 4.1097e-04 8.9448e-02
d3 n/a 8.8726e-02 n/a 1.7576e-01 6.1436e+00 1.0111e-03 5.8343e-02
N0 377 282 329 278 326
J 1.7264e+04 1.1679e+04 1.2153e+04 1.1599e+04 1.2231e+04
U 14.71 26.05 6.79 32.60 22.72

1 − α 0.999 1.000 0.967 1.000 1.000

cons b | a 4.2141e-13 n/a -2.1539e-02 1.6693e-05 6.5242e-02 1.7204e-07
d n/a 2.1539e-02 n/a 2.1548e-02 2.6190e+01 6.9588e-05 –
N0 265 442 442 442 384 449
J 1.2048e+05 4.5489e+04 4.5489e+04 4.5489e+04 2.1328e+04 5.3610e+04

pwl b1| a1 4.3299e-14 7.8328e-02 5.7083e+01 1.5860e-01 3.5225e+00
b(t) b2| a2 4.3275e-14 -2.7575e-02 3.0603e+01 1.3154e-02 5.0008e+00
or b3| a3 4.3276e-14 -8.8266e-02 9.7539e-05 3.0423e-02 1.6283e+00
a(t) b4| a4 4.3301e-14 8.2007e-03 1.2757e+01 2.5953e-01 9.3088e-01

d n/a n/a n/a 9.6290e-02 2.2834e+01 1.0922e-02 –
N0 265 243 217 245 356
J 1.2048e+05 1.1162e+04 1.2553e+04 1.1043e+04 1.2029e+04
U 0.00 27.68 23.61 8.38 31.11

1 − α 0.000 1.000 1.000 0.961 1.000
pwl b n/a 2.0854e+01 1.1896e-01 6.4854e-02
d(t) d1 8.6766e-10 2.6427e-07 1.0260e+01 1.4981e-08

d2 1.1205e-08 6.5134e-02 6.7053e+01 1.8816e-04
d3 9.5705e-02 1.9913e-01 3.7494e+01 6.9877e-04
d4 n/a 6.1553e-08 n/a 2.2829e-01 4.4823e+00 1.2667e-03 –
N0 369 252 250 253
J 1.4967e+04 1.1372e+04 1.1308e+04 1.1223e+04
U 18.35 27.00 7.97 33.99

1 − α 1.000 1.000 0.953 1.000

Table 8: Weedy margin, no spray: Optimal parameters and cost for constant versus piecewise constant
coefficients for all models (top) and constant versus piecewise linear coefficients (bottom) for Models 1–6.
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Figure 21: Fit of exponential models to data from weedy margin, no spray. Coefficients are either constant
(left column) or piecewise constant (right column). Rows 1–3 correspond to exponential Models 1–3,
respectively (birth, death, combined birth/death).
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Figure 22: Fit of Models 4 and 5 to data from weedy margin, no spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise constant coefficient b(t), and piecewise
constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN−d, again with results
for constant and piecewise constant coefficients.
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Figure 23: Fit of logistic Models 6 and 7 to data from weedy margin, no spray. Row 1 corresponds to
the model Ṅ = bN − dN2, with results for constant coefficients, piecewise constant coefficient b(t), and
piecewise constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN2 − dN ,
again with results for constant coefficients and piecewise constant coefficients.
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Figure 24: Fit of exponential models to data from weedy margin, no spray. Coefficients are either constant
(left column) or piecewise linear (center column) and pwl coefficients are shown in the right column. Rows
1–3 correspond to exponential Models 1–3, respectively (birth, death, combined birth/death).
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Figure 25: Fit of Models 4 and 5 to data from weedy margin, no spray. Row 1 corresponds to the
model Ṅ = b − dN , with results for constant coefficients, piecewise linear coefficient b(t), piecewise
linear coefficient d(t), and the resulting coefficients from left to right. Row 2 corresponds to the model
Ṅ = bN − d, with the same columns.
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Figure 26: Fit of logistic Model 6 to data from weedy margin, no spray. Row 1 corresponds to the model
Ṅ = bN − dN2, with results for constant coefficients, piecewise linear coefficient b(t), and piecewise
linear coefficient d(t) from left to right. Row 2 shows the resulting coefficients.
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coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons J 1.2048e+05 4.5489e+04 4.5489e+04 4.5489e+04 2.1328e+04 5.3614e+04 4.3110e+04
pwc J 1.2048e+05 1.1893e+04 1.1568e+04 1.2602e+04 1.4430e+04 2.7067e+04
b(t) U 0.00 n/a 25.42 26.39 6.23 24.44 5.33

1 − α 0.000 1.000 1.000 0.956 1.000 0.931
pwc J 1.7264e+04 1.1679e+04 1.2153e+04 1.1599e+04 1.2231e+04
d(t) U n/a 14.71 n/a 26.05 6.79 32.60 22.72

1 − α 0.999 1.000 0.967 1.000 1.000

cons J 1.2048e+05 4.5489e+04 4.5489e+04 4.5489e+04 2.1328e+04 5.3610e+04 –
pwl J 1.2048e+05 1.1162e+04 1.2553e+04 1.1043e+04 1.2029e+04
b(t) U 0.00 n/a 27.68 23.61 8.38 31.11 –

1 − α 0.000 1.000 1.000 0.961 1.000
pwl J 1.4967e+04 1.1372e+04 1.1308e+04 1.1223e+04
d(t) U n/a 18.35 n/a 27.00 7.97 33.99 –

1 − α 1.000 1.000 0.953 1.000

Table 9: Weedy margin, no spray: Summary of cost function values and statistics.

Comments

• The exponential birth model fails to fit the data at all, regardless of incorporation of time-varying coef-
ficients. The exponential death model performs better, and we again observe a statistically significant
reduction in cost function when incorporating time-varying coefficients of either type.

• For constant coefficients, Model 3 (exponential birth/death) leaves the same least squares residual as
Model 2, but Model 3 performs very well when time-varying coefficients are used. The incorporation
of either type of time-varying coefficients is statistically significant at the 99% confidence level. Both
piecewise constant and piecewise linear coefficients yield an eye-pleasing fit to the data.

• For Models 4 through 7, piecewise coefficients d(t) often outperformed time-varying b(t) (5 out of 7
fits).

• For Models 4 through 6, we observe statistically significant improvement when adding any kind of
time-varying coefficients.

• In increasing order of least squares residual, the top models were: Model 5 (pwl b); Model 3 (pwl)
and Model 6 (pwl d); Model 5 (pwl d); and Model 4 (pwl d). Models 3 and 4 also performed well
with piecewise constant coefficients. Note that the best of these models (the first few) give a rather
satisfactory curve when compared to data as well as providing a small residual.
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5.5 Dataset 5: Weedy margin, low spray (15 g ai/ha)

coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons b | a 6.6751e-11 n/a -5.8838e-02 2.7200e-07 1.5115e-08 3.4690e-09 5.9792e-05
d n/a 5.8838e-02 n/a 5.8838e-02 6.7174e+00 3.4779e-04 6.8318e-02
N0 124 391 391 391 296 545 369
J 9.5130e+04 1.8532e+03 1.8532e+03 1.8532e+03 8.7019e+03 6.7551e+03 1.7755e+03

pwc b1| a1 1.5142e-13 -5.5741e-02 5.9520e+01 5.6285e-02 3.2032e-01 2.4750e-04
b(t) b2| a2 2.3412e-14 -6.8120e-02 2.7251e-01 3.0800e-01 1.9913e-08 1.2574e-03
or b3| a3 2.3379e-14 -4.4933e-02 8.2282e-01 6.3783e-01 1.7516e-02 9.2546e-04
a(t) d n/a n/a n/a 1.8618e+00 2.3649e+01 1.3902e-03 1.2185e-01

N0 124 384 469 315 1199 360
J 9.5130e+04 1.8312e+03 7.4849e+02 1.3656e+03 2.2279e+03 1.5789e+03
U 0.00 0.11 13.28 48.35 18.29 1.12

1 − α 0.000 0.053 0.999 1.000 1.000 0.429
pwc b n/a 5.9535e+01 7.8239e-03 3.0849e-01 4.0406e-04
d(t) d1 5.5753e-02 2.7257e-01 1.3973e+01 1.3409e-03 1.5350e-01

d2 6.8083e-02 8.2301e-01 3.0839e+00 4.7083e-03 4.7980e-02
d3 n/a 4.4992e-02 n/a 1.8623e+00 2.8437e+00 1.0584e-02 1.1272e-01
N0 384 469 346 1200 332
J 1.8312e+03 7.4849e+02 1.4425e+03 9.7652e+02 1.3795e+03
U 0.11 13.28 45.29 53.26 2.58

1 − α 0.053 0.999 1.000 1.000 0.725

cons b | a 1.8330e-09 n/a -5.8838e-02 2.3021e-04 2.1963e-08 1.8188e-08
d n/a 5.8838e-02 n/a 5.8844e-02 6.7206e+00 3.6553e-04 –
N0 124 391 391 391 296 594
J 9.5130e+04 1.8532e+03 1.8532e+03 1.8532e+03 8.7019e+03 6.4203e+03

pwl b1| a1 9.2193e-11 -3.3683e-02 2.8752e+02 8.4129e-03 2.8839e+00
b(t) b2| a2 9.1650e-11 -7.3455e-02 7.8893e+01 2.4245e-07 7.4802e-01
or b3| a3 9.2025e-11 -5.3253e-02 4.0544e+01 1.3981e-01 3.5859e-01
a(t) b4| a4 9.2392e-11 -6.0475e-03 1.7750e+01 5.1982e-01 1.3565e-01

d n/a n/a n/a 8.7911e-01 1.0265e+01 8.3909e-03 –
N0 124 350 624 318 561
J 9.5130e+04 1.5607e+03 1.4132e+03 1.7449e+03 1.4158e+03
U 0.00 1.69 2.80 35.88 31.81

1 − α 0.000 0.360 0.577 1.000 1.000
pwl b n/a 2.0126e+01 1.0683e-01 8.0585e-02
d(t) d1 3.3225e-02 4.7440e-02 5.3526e+01 3.6872e-05

d2 7.3681e-02 2.7414e-01 1.7864e+01 1.3836e-03
d3 5.3216e-02 3.4298e-01 7.7182e+00 2.1305e-03
d4 n/a 3.7473e-03 n/a 1.1723e+00 9.7573e-09 7.1794e-03 –
N0 349 302 362 259
J 1.5603e+03 1.4831e+03 1.6453e+03 1.6980e+03
U 1.69 2.25 38.60 25.03

1 − α 0.361 0.477 1.000 1.000

Table 10: Weedy margin, low spray: Optimal parameters and cost for constant versus piecewise constant
coefficients for all models (top) and constant versus piecewise linear coefficients (bottom) for Models 1–6.
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Figure 27: Fit of exponential models to data from weedy margin, low spray. Coefficients are either
constant (left column) or piecewise constant (right column). Rows 1–3 correspond to exponential Models
1–3, respectively (birth, death, combined birth/death).
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Figure 28: Fit of Models 4 and 5 to data from weedy margin, low spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise constant coefficient b(t), and piecewise
constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN−d, again with results
for constant and piecewise constant coefficients.
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Figure 29: Fit of logistic Models 6 and 7 to data from weedy margin, low spray. Row 1 corresponds to
the model Ṅ = bN − dN2, with results for constant coefficients, piecewise constant coefficient b(t), and
piecewise constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN2 − dN ,
again with results for constant coefficients and piecewise constant coefficients.
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Figure 30: Fit of exponential models to data from weedy margin, low spray. Coefficients are either
constant (left column) or piecewise linear (center column) and pwl coefficients are shown in the right
column. Rows 1–3 correspond to exponential Models 1–3, respectively (birth, death, combined birth/death).
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Figure 31: Fit of Models 4 and 5 to data from weedy margin, low spray. Row 1 corresponds to the
model Ṅ = b − dN , with results for constant coefficients, piecewise linear coefficient b(t), piecewise
linear coefficient d(t), and the resulting coefficients from left to right. Row 2 corresponds to the model
Ṅ = bN − d, with the same columns.

0 20 40 60
0

100

200

300

400

500

600
cons, J=6.42e+03

census time

Me
an 

aph
ids

 / m
3

0 20 40 60
0

100

200

300

400

500

600
pwl b, J=1.42e+03

0 20 40 60
0

50

100

150

200

250

300

350
pwl d, J=1.7e+03

0 20 40 60
0

50

100

150

200

250

300

350

400
cons, J=1.78e+03

time t
0 20 40 60

0

1

2

3

4

5

6

7

8
x 10−3 d(t)

time t
0 20 40 60

0

0.5

1

1.5

2

2.5

3
b(t)

time t

Figure 32: Fit of logistic Model 6 to data from weedy margin, low spray. Row 1 corresponds to the model
Ṅ = bN − dN2, with results for constant coefficients, piecewise linear coefficient b(t), and piecewise
linear coefficient d(t) from left to right. Row 2 shows the resulting coefficients.
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coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons J 9.5130e+04 1.8532e+03 1.8532e+03 1.8532e+03 8.7019e+03 6.7551e+03 1.7755e+03
pwc J 9.5130e+04 1.8312e+03 7.4849e+02 1.3656e+03 2.2279e+03 1.5789e+03
b(t) U 0.00 n/a 0.11 13.28 48.35 18.29 1.12

1 − α 0.000 0.053 0.999 1.000 1.000 0.429
pwc J 1.8312e+03 7.4849e+02 1.4425e+03 9.7652e+02 1.3795e+03
d(t) U n/a 0.11 n/a 13.28 45.29 53.26 2.58

1 − α 0.053 0.999 1.000 1.000 0.725

cons J 9.5130e+04 1.8532e+03 1.8532e+03 1.8532e+03 8.7019e+03 6.4203e+03 –
pwl J 9.5130e+04 1.5607e+03 1.4132e+03 1.7449e+03 1.4158e+03
b(t) U 0.00 n/a 1.69 2.80 35.88 31.81 –

1 − α 0.000 0.360 0.577 1.000 1.000
pwl J 1.5603e+03 1.4831e+03 1.6453e+03 1.6980e+03
d(t) U n/a 1.69 n/a 2.25 38.60 25.03 –

1 − α 0.361 0.477 1.000 1.000

Table 11: Weedy margin, low spray: Summary of cost function values and statistics.

Comments

• This dataset essentially exhibits an exponential decay trend, so the simpler models fit well.

• As expected, the exponential birth model fails to fit the data at all, regardless of incorporation of
time-varying coefficients. The exponential death model performs better and we do not observe any
substantial improvement by using time-varying coefficients. Since the data trend is essentially decay-
ing, we do not see any improvement by allowing birth and death, that is, Model 3 does not outperform
Model 2.

• Of the remaining models, Model 4 yields the best fit to data, when considered with piecewise constant
coefficients. Unfortunately while the residual is smaller, the initial condition estimated seems too
large.

• There is no clear difference between allowing b(t) versus d(t) to be time-varying; their performance
varies from model to model.

• For Models 5 and 6, we observe statistically significant improvement when adding any kind of time-
varying coefficients, though to the naked eye, the fits offered by these models are not appreciably
better.

• In increasing order of least squares residual, the top models are: Model 4 (pwc b or d); Model 6 (pwc
d); Model 5 (pwc b); and Model 7 (pwc d). Notice that for this dataset, piecewise constant coefficients
outperformed piecewise linear.
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5.6 Dataset 6: Weedy margin, high spray (30 g ai/ha)

coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons b | a 3.9640e-12 n/a -4.5290e-02 3.0840e-08 2.7641e-03 2.2880e-09 6.8835e-04
d n/a 4.5293e-02 n/a 4.5291e-02 6.0575e+00 2.9001e-04 1.6296e-01
N0 110 293 293 293 254 317 233
J 8.2011e+04 2.4298e+04 2.4298e+04 2.4298e+04 1.9209e+04 3.2758e+04 1.6269e+04

pwc b1| a1 1.9826e-13 3.3172e-02 9.5504e+01 1.3023e-01 2.5470e+00 6.9557e-04
b(t) b2| a2 1.9825e-13 -2.5439e-01 2.5391e+01 3.0482e-01 8.5426e-01 1.0468e-03
or b3| a3 1.9820e-13 4.7344e-02 3.6168e+00 6.7097e-01 4.7069e-02 1.0019e-08
a(t) d n/a n/a n/a 3.7390e-01 3.0836e+01 1.0053e-02 1.6594e-01

N0 110 178 0 228 0 233
J 8.2011e+04 1.5697e+04 8.7178e+03 1.6539e+04 7.4339e+03 1.6101e+04
U 0.00 4.93 16.08 1.45 30.66 0.09

1 − α 0.000 0.915 1.000 0.516 1.000 0.046
pwc b n/a 5.5139e+01 2.0740e-01 2.4627e-01 1.4429e-03
d(t) d1 2.4424e-10 1.5014e-01 4.8190e+01 6.1679e-04 3.3658e-01

d2 1.4477e-01 7.2576e-01 2.1303e+01 3.6529e-03 1.0053e-01
d3 n/a 9.0940e-02 n/a 3.5003e+00 7.3246e+00 1.9148e-02 4.9900e-01
N0 223 0 231 78 233
J 1.6478e+04 4.1709e+03 1.3731e+04 3.9552e+03 1.2203e+04
U 4.27 43.43 3.59 65.54 3.00

1 − α 0.882 1.000 0.834 1.000 0.777

cons b | a 3.3403e-09 n/a -4.5308e-02 3.3257e-05 2.8135e-03 3.0535e-08
d n/a 4.5293e-02 n/a 4.5226e-02 6.0636e+00 2.9061e-04 –
N0 110 293 293 293 254 318
J 8.2011e+04 2.4298e+04 2.4298e+04 2.4298e+04 1.9209e+04 3.2745e+04

pwl b1| a1 1.6722e-10 2.3849e-01 5.9473e+01 7.7733e-02 4.3605e-01
b(t) b2| a2 1.6815e-10 -1.8197e-01 5.7922e-03 6.2092e-08 7.0637e-09
or b3| a3 1.6769e-10 2.4690e-01 5.8771e-01 1.4964e-01 4.8039e-09
a(t) b4| a4 1.6702e-10 -5.0000e+00 8.5440e-02 9.0937e-01 1.4877e-08

d n/a n/a n/a 1.0457e-01 1.2653e+01 8.3158e-04 –
N0 110 73 0 224 43
J 8.2011e+04 3.1240e+03 8.0410e+03 1.4054e+04 8.6399e+03
U 0.00 61.00 18.20 3.30 25.11

1 − α 0.000 1.000 1.000 0.653 1.000
pwl b n/a 4.7187e+01 8.6835e-02 2.3836e-01
d(t) d1 7.3573e-09 3.6083e-06 4.7379e-04 1.0233e-08

d2 5.9863e-02 4.0225e-01 3.5030e+01 1.8417e-03
d3 5.1267e-09 7.2455e-01 3.9276e+00 5.3865e-03
d4 n/a 2.3402e+00 n/a 7.1127e+00 5.6363e+00 5.7089e-02 –
N0 239 1 151 66
J 1.6479e+04 7.4452e+03 1.1752e+04 7.4899e+03
U 4.27 20.37 5.71 30.35

1 − α 0.766 1.000 0.873 1.000

Table 12: Weedy margin, high spray: Optimal parameters and cost for constant versus piecewise constant
coefficients for all models (top) and constant versus piecewise linear coefficients (bottom) for Models 1–6.

40



0 10 20 30 40 50
0

50

100

150

200

250

300

350
cons growth, J=8.2e+04

M
ea

n 
ap

hi
ds

 / 
m

3

0 10 20 30 40 50
0

50

100

150

200

250

300

350
pwc growth, J=8.2e+04

0 10 20 30 40 50
0

50

100

150

200

250

300

350
cons death, J=2.43e+04

M
ea

n 
ap

hi
ds

 / 
m

3

0 10 20 30 40 50
0

50

100

150

200

250

300

350
pwc death, J=1.65e+04

0 10 20 30 40 50
0

50

100

150

200

250

300

350
cons growth/death, J=2.43e+04

time t

M
ea

n 
ap

hi
ds

 / 
m

3

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400
pwc growth/death, J=1.57e+04

time t

Figure 33: Fit of exponential models to data from weedy margin, high spray. Coefficients are either
constant (left column) or piecewise constant (right column). Rows 1–3 correspond to exponential Models
1–3, respectively (birth, death, combined birth/death).
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Figure 34: Fit of Models 4 and 5 to data from weedy margin, high spray. Row 1 corresponds to the model
Ṅ = b − dN , with results for constant coefficients, piecewise constant coefficient b(t), and piecewise
constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN−d, again with results
for constant and piecewise constant coefficients.
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Figure 35: Fit of logistic Models 6 and 7 to data from weedy margin, high spray. Row 1 corresponds to
the model Ṅ = bN − dN2, with results for constant coefficients, piecewise constant coefficient b(t), and
piecewise constant coefficient d(t) from left to right. Row 2 corresponds to the model Ṅ = bN2 − dN ,
again with results for constant coefficients and piecewise constant coefficients.
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Figure 36: Fit of exponential models to data from weedy margin, high spray. Coefficients are either
constant (left column) or piecewise linear (center column) and pwl coefficients are shown in the right
column. Rows 1–3 correspond to exponential Models 1–3, respectively (birth, death, combined birth/death).
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Figure 37: Fit of Models 4 and 5 to data from weedy margin, high spray. Row 1 corresponds to the
model Ṅ = b − dN , with results for constant coefficients, piecewise linear coefficient b(t), piecewise
linear 7coefficient d(t), and the resulting coefficients from left to right. Row 2 corresponds to the model
Ṅ = bN − d, with the same columns.
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Figure 38: Fit of logistic Model 6 to data from weedy margin, high spray. Row 1 corresponds to the model
Ṅ = bN − dN2, with results for constant coefficients, piecewise linear coefficient b(t), and piecewise
linear coefficient d(t) from left to right. Row 2 shows the resulting coefficients.
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coeff Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
type var Ṅ = bN Ṅ = −dN Ṅ = aN (a ∈ R) Ṅ = b− dN Ṅ = bN − d Ṅ = bN − dN2 Ṅ = bN2 − dN

cons J 8.2011e+04 2.4298e+04 2.4298e+04 2.4298e+04 1.9209e+04 3.2758e+04 1.6269e+04
pwc J 8.2011e+04 1.5697e+04 8.7178e+03 1.6539e+04 7.4339e+03 1.6101e+04
b(t) U 0.00 n/a 4.93 16.08 1.45 30.66 0.09

1 − α 0.000 0.915 1.000 0.516 1.000 0.046
pwc J 1.6478e+04 4.1709e+03 1.3731e+04 3.9552e+03 1.2203e+04
d(t) U n/a 4.27 n/a 43.43 3.59 65.54 3.00

1 − α 0.882 1.000 0.834 1.000 0.777

cons J 8.2011e+04 2.4298e+04 2.4298e+04 2.4298e+04 1.9209e+04 3.2745e+04 –
pwl J 8.2011e+04 3.1240e+03 8.0410e+03 1.4054e+04 8.6399e+03
b(t) U 0.00 n/a 61.00 18.20 3.30 25.11 –

1 − α 0.000 1.000 1.000 0.653 1.000
pwl J 1.6479e+04 7.4452e+03 1.1752e+04 7.4899e+03
d(t) U n/a 4.27 n/a 20.37 5.71 30.35 –

1 − α 0.766 1.000 0.873 1.000

Table 13: Weedy margin, high spray: Summary of cost function values and statistics.

Comments

• Again, the exponential birth model fails to fit the data at all, regardless of incorporation of time-
varying coefficients. The exponential death model also fails to fit the data.

• Model 3 (exponential birth/death) with piecewise linear time-varying coefficients is the best-fitting
model and their incorporation is statistically significant at the 99% confidence level.

• Models 5 and 7 fit well, even with constant coefficients. We see some discrepancy between the
constant coefficient solutions computed with the ODE solver versus with the analytical solution.

• In general the solution curves at the optimal parameters seem more erratic for this dataset, especially
for piecewise constant coefficients, where there are a lot of abrupt changes in trajectory.

• Of the remaining models, Models 4 and 6 leave the smallest residuals and adding any kind of time-
varying coefficients is statistically significant at the 99% confidence level.

• The model ranking for this dataset is: Model 3 (pwl); Model 6 (pwc d); Model 4 (pwc d); Model 6
(pwc b) ; Model 4 (pwl d); and Model 6 (pwl d). We again observe that time-varying d(t) are often
better than b(t).
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6 Standard error results

6.1 Results for fits from Section 5

Tables 14 through 19 show the standard errors (estimates of variance) for parameters in Models 3 and 6,
for datasets 1 through 6. We focus on these two models (especially with piecewise linear coefficients) to
demonstrate the computational method since they are of greatest interest to us following our initial parameter
estimation. Computations are as described in Section 4.3 and the sensitivity equations are solved with ODE
solver relative tolerance 10−6 and absolute tolerance 10−9. Observe that while in many cases the standard
errors are reasonable, we see from Tables 16, 17, and 18, that in many cases there are substantial variances.
This is somewhat to be expected, since in some cases we estimate six parameters in a dynamical model
using only nine data points. Further exploration of this phenomenon is detailed in Section 6.2.

coeff Model 3 (Ṅ = aN (a ∈ R)) Model 6 (Ṅ = bN − dN2)
type var µ σ µ σ

cons b | a -1.1919e-02 4.7231e-03 4.8430e-07 1.0157e-01
d n/a n/a 3.6550e-05 3.3912e-04
N0 395 47 394 97
J 2.6554e+04 2.8333e+04

pwl b1| a1 1.1232e-01 6.1365e-02 1.5264e-01 5.7836e-01
b(t) b2| a2 -4.3865e-02 2.4033e-02 1.1703e-02 7.3569e-01
or b3| a3 -2.8820e-02 3.2907e-02 2.2547e-04 3.8509e-01
a(t) b4| a4 7.4932e-03 1.3094e-01 2.9598e-02 4.0528e-01

d n/a n/a 1.2550e-04 1.7081e-03
N0 199 70 189 176
J 1.0123e+04 1.0193e+04
U 14.61 n/a 16.02 n/a

1 − α 0.998 0.999
pwl b 1.1665e-01 7.6459e-01
d(t) d1 4.0952e-07 2.2608e-03

d2 3.8839e-04 1.7837e-03
d3 5.8297e-04 3.1548e-03
d4 n/a n/a 6.4757e-04 3.9804e-03
N0 184 216
J 1.0220e+04
U 15.95 n/a

1 − α 0.999

Table 14: Bare margin, no spray: initial parameter estimates µ and standard errors σ for Models 3 and 6.
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coeff Model 3 (Ṅ = aN (a ∈ R)) Model 6 (Ṅ = bN − dN2)
type var µ σ µ σ

cons b | a -3.0353e-03 9.3249e-03 4.6044e-01 1.5652e+00
d n/a n/a 2.6087e-03 9.0260e-03
N0 181 48 48 248
J 3.3400e+04 3.1560e+04

pwl b1| a1 1.3174e-01 1.8439e-01 3.9487e-01 7.6327e-01
b(t) b2| a2 -3.1967e-02 6.7396e-02 1.4407e-01 1.2224e+00
or b3| a3 -1.5505e-02 7.4227e-02 1.2657e-01 8.3225e-01
a(t) b4| a4 -8.0707e-02 3.0998e-01 5.7718e-07 7.0874e-01

d n/a n/a 7.9110e-04 4.9393e-03
N0 84 91 22 72
J 2.1561e+04 1.8950e+04
U 4.94 n/a 5.99 n/a

1 − α 0.824 0.888
pwl b 2.2110e-01 8.3003e-01
d(t) d1 1.1753e-08 4.8444e-03

d2 1.2122e-03 3.8138e-03
d3 1.0543e-03 4.2719e-03
d4 n/a n/a 3.5480e-03 8.4937e-03
N0 44 114
J 1.7237e+04
U 7.48 n/a

1 − α 0.942

Table 15: Bare margin, low spray: parameter estimates µ and standard errors σ for Models 3 and 6.

coeff Model 3 (Ṅ = aN (a ∈ R)) Model 6 (Ṅ = bN − dN2)
type var µ σ µ σ

cons b | a -9.8693e-03 9.0441e-03 2.1707e-07 2.3784e-01
d n/a n/a 5.0075e-05 1.3882e-03
N0 216 51 212 97
J 3.2146e+04 3.2993e+04

pwl b1| a1 2.4836e-02 1.2227e-01 1.4878e-01 1.1950e+00
b(t) b2| a2 2.0486e-02 4.8434e-02 1.4464e-01 2.4078e+00
or b3| a3 -1.0502e-01 6.7966e-02 7.9690e-07 1.3069e+00
a(t) b4| a4 1.1666e-01 2.7506e-01 6.0767e-02 5.4498e-01

d n/a n/a 5.2798e-04 8.6817e-03
N0 154 104 114 134
J 1.1290e+04 1.2420e+04
U 16.62 n/a 14.91 n/a

1 − α 0.999 0.998
pwl b 4.4446e+00 1.9150e+02
d(t) d1 2.6468e-02 1.1440e+00

d2 1.9865e-02 8.5804e-01
d3 1.8867e-02 8.1184e-01
d4 n/a n/a 8.9076e-02 3.7154e+00
N0 702 5.976877e+10
J 1.1604e+04
U 16.59 n/a

1 − α 0.999

Table 16: Bare margin, high spray: parameter estimates µ and standard errors σ for Models 3 and 6. Ob-
serve unreasonably high variance forN0 in the Model 6 piecewise linear d(t) case. Several other parameters
have large standard errors, given the magnitude of the parameters.
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coeff Model 3 (Ṅ = aN (a ∈ R)) Model 6 (Ṅ = bN − dN2)
type var µ σ µ σ

cons b | a -2.1539e-02 7.0853e-03 1.7204e-07 9.6265e-02
d n/a n/a 6.9588e-05 3.5356e-04
N0 442 67 449 183
J 4.5489e+04 5.3610e+04

pwl b1| a1 7.8328e-02 6.2520e-02 3.5225e+00 7.3590e+01
b(t) b2| a2 -2.7575e-02 2.5915e-02 5.0008e+00 1.0793e+02
or b3| a3 -8.8266e-02 5.0496e-02 1.6283e+00 3.6084e+01
a(t) b4| a4 8.2007e-03 2.3207e-01 9.3088e-01 2.0112e+01

d n/a n/a 1.0922e-02 2.3269e-01
N0 243 85 356 257222023
J 1.1162e+04 1.2029e+04
U 27.68 n/a 31.11 n/a

1 − α 1.000 1.000
pwl b 6.4854e-02 1.0874e+00
d(t) d1 1.4981e-08 3.3233e-03

d2 1.8816e-04 2.2235e-03
d3 6.9877e-04 5.2247e-03
d4 n/a n/a 1.2667e-03 1.3773e-02
N0 253 201
J 1.1223e+04
U 33.99 n/a

1 − α 1.000

Table 17: Weedy margin, no spray: parameter estimates µ and standard errors σ for Models 3 and 6.
Observe unreasonably high variance for several parameters, and especially N0, in the Model 6 piecewise
linear b(t) case.

coeff Model 3 (Ṅ = aN (a ∈ R)) Model 6 (Ṅ = bN − dN2)
type var µ σ µ σ

cons b | a -5.8838e-02 4.6498e-03 1.8188e-08 3.2451e-02
d n/a n/a 3.6553e-04 2.4914e-04
N0 391 20 594 318
J 1.8532e+03 6.4203e+03

pwl b1| a1 -3.3683e-02 3.3764e-02 2.8839e+00 8.7601e+01
b(t) b2| a2 -7.3455e-02 2.2960e-02 7.4802e-01 2.3807e+01
or b3| a3 -5.3253e-02 6.7707e-02 3.5859e-01 1.2110e+01
a(t) b4| a4 -6.0475e-03 3.0246e-01 1.3565e-01 5.7342e+00

d n/a n/a 8.3909e-03 2.5086e-01
N0 350 58 561 6317532
J 1.5607e+03 1.4158e+03
U 1.69 n/a 31.81 n/a

1 − α 0.360 1.000
pwl b 8.0585e-02 5.0905e-01
d(t) d1 3.6872e-05 7.2195e-04

d2 1.3836e-03 4.5713e-03
d3 2.1305e-03 1.0089e-02
d4 n/a n/a 7.1794e-03 2.1254e-02
N0 259 252
J 1.6980e+03
U 25.03 n/a

1 − α 1.000

Table 18: Weedy margin, low spray: parameter estimates µ and standard errors σ for Models 3 and 6.
Again, observe unreasonably high variance for N0 (and other parameters) in the piecewise linear b(t) case
for Model 6.
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coeff Model 3 (Ṅ = aN (a ∈ R)) Model 6 (Ṅ = bN − dN2)
type var µ σ µ σ

cons b | a -4.5308e-02 1.5274e-02 3.0535e-08 1.0480e-01
d n/a n/a 2.9061e-04 8.9634e-04
N0 293 63 318 301
J 2.4298e+04 3.2745e+04

pwl b1| a1 2.3849e-01 6.1702e-02 4.3605e-01 6.8975e-01
b(t) b2| a2 -1.8197e-01 4.3079e-02 7.0637e-09 3.5514e-01
or b3| a3 2.4690e-01 1.7799e-01 4.8039e-09 2.0463e-01
a(t) b4| a4 -5.0000e+00 3.0198e+00 1.4877e-08 7.7309e-01

d n/a n/a 8.3158e-04 2.3423e-03
N0 73 25 43 98
J 3.1240e+03 8.6399e+03
U 61.00 n/a 25.11 n/a

1 − α 1.000 1.000
pwl b 2.3836e-01 6.0735e-01
d(t) d1 1.0233e-08 2.5834e-03

d2 1.8417e-03 3.1529e-03
d3 5.3865e-03 1.3270e-02
d4 n/a n/a 5.7089e-02 1.6867e-01
N0 66 110
J 7.4899e+03
U 30.35 n/a

1 − α 1.000

Table 19: Weedy margin, high spray: parameter estimates µ and standard errors σ for Models 3 and 6.

6.2 Further exploration of variance

To try to better understand the large variances seen in our parameter estimates, especially with Model 6,
we experiment with the datasets corresponding to bare ground, high spray and weedy ground, no spray,
re-running the inverse problem with two factors:

1. Estimating only a subset of the parameters at a time. Attempted with Models 3 and 6.

2. Further restricting the admissible parameter set from which the optimal q can be chosen. Prompted
by some odd-looking fits to data, as well as unreasonable parameters and initial conditions, we study
the effect of this factor on the results for Model 6.

We also tighten the ODE solver relative tolerance for the inverse problem forward solves to 10−4 to ensure
accuracy in the variance computations.

Estimation experiments with Model 3 (Ṅ = aN )

In fitting Model 3, we do not observe any wildly deviant parameter values or initial conditions, so we only
study factor 1: the effect of estimating a subset of parameters. After estimating parameters in the constant
coefficient case, we estimate (a) all five parameters in the piecewise linear coefficient variant of Model 3,
then (b) only a1 – a4 (holding N0 at the previously estimated optimal value), and (c) only N0, holding a1 –
a4 at previous optimal values.

There is no perceivable difference in fit in estimating over all the parameters or some restricted parameter
set (see Figures 39 and 40). For the bare ground, high spray case, we observe substantial reduction in
variance when estimating either subset of the parameters (see Table 20). So if we had reasonable estimates
of either a1 − a4 or N0 and could estimate only the other parameter(s), we could expect smaller variance in
the estimates. From Table 21 we observe that for the weedy ground, no spray case, there is a small difference
in estimating a(t) only and a more substantial reduction in variance when estimating only N0.
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Figure 39: Bare ground, high spray: Comparison of fit and piecewise linear coefficients for fitting all
parameters (column 1), only a1 – a4 (column 2), or only N0 (column 3) in Model 3. When optimizing
over a restricted parameter set, all other parameters are kept at the optimal values from estimating them all
simultaneously. Notice all fits are nearly identical and estimated time-varying parameters only vary slightly.

coeff Model 3 (Ṅ = aN (a ∈ R)) Model 3 (a(t) only) Model 3 (N0 only)
type var µ σ µ σ µ σ

cons a -9.8693e-03 9.0441e-03
N0 216 51
J 3.2146e+04

pwl a1 -1.4269e-03 1.2171e-01 5.8145e-06 3.0460e-02 -1.4269e-03
a2 2.9628e-02 4.9035e-02 2.8393e-02 2.5984e-02 2.9628e-02

a(t) a3 -1.0830e-01 6.8443e-02 -1.0678e-01 5.8691e-02 -1.0830e-01
a4 1.2543e-01 2.7512e-01 1.2054e-01 2.4311e-01 1.2543e-01
N0 178 117 178 177 13
J 1.1505e+04 1.1498e+04 1.1500e+04
U 16.15 n/a 16.16 n/a 16.16 n/a

1 − α 0.999 0.999 0.999

Table 20: Bare ground, high spray: Estimated parameters µ and standard errors σ for Model 3, estimating
all parameters and select subsets of parameters. Notice reduction in standard error when estimating a subset
of the parameters in both cases.
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Figure 40: Weedy ground, no spray: Comparison of fit and piecewise linear coefficients for fitting all
parameters (column 1), only a1 – a4 (column 2), or only N0 (column 3) in Model 3. When optimizing
over a restricted parameter set, all other parameters are kept at the optimal values from estimating them all
simultaneously. Again, notice all fits are nearly identical and estimated parameters only vary slightly.

coeff Model 3 (Ṅ = aN (a ∈ R)) Model 3 (a(t) only) Model 3 (N0 only)
type var µ σ µ σ µ σ

cons a -2.1539e-02 7.0853e-03
N0 442 67
J 4.5489e+04

pwl a1 8.1381e-02 6.2678e-02 8.1258e-02 1.4755e-02 8.1381e-02
a2 -2.8643e-02 2.5924e-02 -2.8562e-02 1.4681e-02 -2.8643e-02

a(t) a3 -8.7493e-02 5.0484e-02 -8.7602e-02 4.4103e-02 -8.7493e-02
a4 4.9259e-03 2.3264e-01 5.3782e-03 2.0671e-01 4.9259e-03
N0 239 84 239 239 10
J 1.1180e+04 1.1180e+04 1.1180e+04
U 27.62 n/a 27.62 n/a 27.62 n/a

1 − α 1.000 1.000 1.000

Table 21: Weedy ground, no spray: Estimated parameters µ and standard errors σ for Model 3, estimat-
ing all parameters and select subsets of parameters. Notice more drastic reduction in standard error when
estimating only N0.
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So as anticipated, there is reduction in variance when estimating fewer parameters, but some caution is
necessary in interpreting this result. While we only estimate a subset of the parameters for this experiment,
we hold one or more parameters at previously estimated optimal values. So at some point each of the five
parameter values is actually estimated. This needs to be considered when assessing the uncertainty in the
parameters.

Estimation experiments with Model 6 (Ṅ = bN − dN2)

We examine fitting Model 6 to the same two datasets, exploring both factors 1 and 2. First we estimate all six
parameters in the model for the piecewise linear b(t) and piecewise linear d(t) cases. We then perform the
same optimization with tighter bounds on the parameters, since some of the estimated parameters reported
in Section 5 may not make physical sense (e.g., instantaneous growth rate of b = 4.4, in one case). We
consider restricting the parameters according to the following table, where the limits on the parameters are
[lower bound, upper bound]. For each of the cases original (reg.) bounds and restricted (tgt.) bounds, we

bare margin, high spray weedy margin, no spray
original restricted original restricted

b [1e-9, 5] [1e-5, 1] [1e-9, 10] [1e-5, 1]
d [1e-8, 1] [1e-5, 0.1] [1e-8, 1] [1e-5, 0.1]
N0 [0 , 1200] [0, 500] [0, 1200] [0,600]

calculate standard errors for estimating all parameters, and then subsets of parameters. For example, we
estimate b1 − b4, holding d,N0 fixed at optimal, then vice-versa.

See Table 22 for the bare ground, high spray and Table 23 for the weedy ground, no spray, detailed
results. Most of the model fits to data are nearly identical, so only a few select figures are included and
referenced in the text below. In some cases tightening the bounds on the parameters substantially reduces
variance. We see some reduction in variance by estimating fewer parameters, but have the same concerns as
expressed above for Model 3.

Focusing on Table 22 (bare margin, high spray) we note that the piecewise linear b(t) case does not
exhibit reduction in variance when tightening parameter bounds, but does when estimating a subset of the
parameters. In the piecewise linear d(t) case, we see more significant reduction by estimating with tighter
constraints and by reducing the number of free variables. Estimating only N0 made a substantial difference
in the fit in this latter case, though the variance estimate is still huge. Figure 41 illustrates a typical difference
in fit obtained by tightening the bounds on the parameters. Visual fit to the data did not change appreciably
for estimating subsets of parameters, so those plots are omitted.

Examining some sample plots for weedy margin, no spray (Figure 42, we see that the restriction of
parameters helped significantly in the piecewise linear b(t) case, smoothing the fit as shown in Figure 42.
We do not see any visible difference in fit when estimating with a reduced parameter set, so the plots are
omitted . We also observe that in some cases, the variance is still enormous, despite the incorporation of our
two study factors (see Table 23).
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coeff all free reg. bds. all free tgt. bds. pwl free reg. bds. pwl free tgt. bds. cons free reg. bds. cons free tgt. bds.
type var µ σ µ σ µ σ µ σ µ σ µ σ

cons b 9.9944e-07 2.3519e-01 1.1407e-05 2.3891e-01
d 5.0595e-05 1.3714e-03 4.9937e-05 1.3951e-03
N0 213 97 212 96
J 3.2994e+04 3.2994e+04

pwl b1 1.5575e-01 1.1982e+00 1.5425e-01 1.1690e+00 1.5560e-01 4.0994e-02 1.5462e-01 4.1070e-02 1.5575e-01 1.5425e-01
b(t) b2 1.5063e-01 2.4711e+00 1.5197e-01 2.4142e+00 1.5044e-01 3.5699e-02 1.5176e-01 3.5785e-02 1.5063e-01 1.5197e-01

b3 9.4729e-06 1.3082e+00 1.4236e-05 1.2803e+00 6.8466e-05 7.6409e-02 1.4818e-05 7.6478e-02 9.4729e-06 1.4236e-05
b4 7.0770e-02 5.6205e-01 7.2668e-02 5.5208e-01 6.8562e-02 2.6722e-01 7.0879e-02 2.6676e-01 7.0770e-02 7.2668e-02
d 5.4836e-04 8.8272e-03 5.5126e-04 8.6292e-03 5.4836e-04 5.5126e-04 5.4893e-04 5.7305e-05 5.5125e-04 5.7461e-05
N0 110 136 111 134 110 111 111 28 111 28
J 1.2437e+04 1.2434e+04 1.2436e+04 1.2433e+04 1.2435e+04 1.2434e+04
U 14.88 14.88 14.88 14.88 14.88 14.88

1 − α 0.998 0.998 0.998 0.998 0.998 0.998
pwl b 4.4539e+00 1.8961e+02 5.0466e-01 2.9670e+00 4.4539e+00 5.0466e-01 4.4519e+00 3.6155e-01 5.0549e-01 3.6155e-01
d(t) d1 2.6362e-02 1.1255e+00 2.6427e-03 1.7064e-02 2.6490e-02 6.2864e-03 2.6441e-03 6.7894e-04 2.6362e-02 2.6427e-03

d2 2.0113e-02 8.5863e-01 2.2269e-03 1.3359e-02 1.9965e-02 6.6032e-03 2.2224e-03 6.6882e-04 2.0113e-02 2.2269e-03
d3 1.8668e-02 7.9402e-01 2.2239e-03 1.2754e-02 1.8851e-02 6.9097e-03 2.2235e-03 1.0583e-03 1.8668e-02 2.2239e-03
d4 8.9878e-02 3.7029e+00 1.3213e-02 5.4532e-02 8.9294e-02 3.8018e-02 1.3338e-02 7.0246e-03 8.9878e-02 1.3213e-02
N0 584 4.804537e+10 74 485 584 74 1090 1.071894e+11 74 72
J 1.1601e+04 1.2711e+04 1.1598e+04 1.2708e+04 1.1600e+04 1.2709e+04
U 16.60 14.36 16.60 14.37 16.60 14.36

1 − α 0.999 0.998 0.999 0.998 0.999 0.998

Table 22: Bare margin, high spray: Parameter estimates µ and variance σ for Model 6 with various constraints and subsets of parameters estimated.
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coeff all free reg. bds. all free tgt. bds. pwl free reg. bds. pwl free tgt. bds. cons free reg. bds. cons free tgt. bds.
type var µ σ µ σ µ σ µ σ µ σ µ σ

cons b 1.7204e-07 9.6278e-02 1.0587e-05 9.7411e-02
d 6.9579e-05 3.5361e-04 6.8878e-05 3.5824e-04
N0 449 183 446 181
J 5.3610e+04 5.3636e+04

pwl b1 5.4480e+00 1.5385e+02 2.1974e-01 1.7821e+00 5.4602e+00 8.5151e-01 2.1978e-01 2.7051e-02 5.4480e+00 2.1974e-01
b(t) b2 7.8745e+00 2.2670e+02 1.8475e-01 2.1429e+00 7.8541e+00 1.0948e+00 1.8473e-01 3.0385e-02 7.8745e+00 1.8475e-01

b3 2.5248e+00 7.4086e+01 1.1751e-05 9.6535e-01 2.5362e+00 1.0070e+00 1.0222e-05 6.3221e-02 2.5248e+00 1.1751e-05
b4 1.5226e+00 4.3653e+01 2.7275e-02 3.6669e-01 1.5208e+00 1.3341e+00 2.6962e-02 2.2859e-01 1.5226e+00 2.7275e-02
d 1.7050e-02 4.8694e-01 4.8060e-04 5.1161e-03 1.7050e-02 4.8060e-04 1.7050e-02 9.3628e-04 4.7990e-04 3.2245e-05
N0 236 1.651721e+11 244 443 236 244 831 1.757925e+12 242 48
J 1.2006e+04 1.2249e+04 1.2005e+04 1.2249e+04 1.2001e+04 1.2246e+04
U 31.19 30.41 31.19 30.41 31.20 30.42

1 − α 1.000 1.000 1.000 1.000 1.000 1.000
pwl b 6.4954e-02 1.0916e+00 6.5474e-02 1.0822e+00 6.4954e-02 6.5474e-02 6.4778e-02 7.7653e-03 6.5382e-02 7.7653e-03
d(t) d1 8.7650e-08 3.3321e-03 1.0006e-05 3.2963e-03 1.0000e-08 4.9166e-05 1.0006e-05 4.9428e-05 8.7650e-08 1.0006e-05

d2 1.8879e-04 2.2339e-03 1.8739e-04 2.2272e-03 1.8879e-04 5.8346e-05 1.8753e-04 5.8499e-05 1.8879e-04 1.8739e-04
d3 6.9847e-04 5.2450e-03 7.0385e-04 5.1890e-03 6.9856e-04 2.7496e-04 7.0302e-04 2.7549e-04 6.9847e-04 7.0385e-04
d4 1.2720e-03 1.3823e-02 1.2688e-03 1.3760e-02 1.2702e-03 1.5645e-03 1.2717e-03 1.5655e-03 1.2720e-03 1.2688e-03
N0 253 202 257 196 253 257 254 25 257 25
J 1.1226e+04 1.1238e+04 1.1226e+04 1.1238e+04 1.1225e+04 1.1238e+04
U 33.98 33.95 33.98 33.95 33.99 33.95

1 − α 1.000 1.000 1.000 1.000 1.000 1.000

Table 23: Weedy margin, no spray: Parameter estimates µ and variance σ for Model 6 with various constraints and subsets of parameters estimated.
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Figure 41: Bare ground, high spray: Comparison of Model 6 fit to data using the initial bounds (left
column) and tighter bounds (right column) on the parameters. By tightening the bounds the initial condition
became more reasonable and the magnitude of the death rate coefficient d(t) dropped an order of magnitude.
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Figure 42: Weedy ground, no spray: Comparison of Model 6 fit to data using the initial bounds (left
column) and tighter bounds (right column) on the parameters. By tightening the bounds the model fit curve
smoother out considerably and the magnitude of the birth rate coefficient b(t) dropped an order of magnitude.
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Varying number of observations

We expect that gathering more data would substantially reduce variability of the parameter estimates. To
test this hypothesis, we experimented with the number of observations (censuses) used in the experiment by
using simulated data.

Simulated data were generated based taking the optimal estimated parameters for the case weedy mar-
gin, no spray, Model 3, piecewise linear coefficient a(t). We consider various numbers of observations
n = 4, 6, 8, 16, 32, 64, 100, and 500, where the observations are uniformly spaced on [4, 45] days, endpoints
inclusive. Note that the problem is underdetermined for the case n = 4 since we estimate five parameters.

Simulated exact data {yi}ni=1 were generated using the optimal parameters in the model. We then added
random normal relative noise to the data sets to get the noisy simulated data zi: zi = yi + (nl ∗ εi)yi, where
εi is sampled from a N (0, 1) distribution and nl = 5% is the noise level.

Figure 43 shows the six of the noisy datasets considered (n = 100, 500 omitted), including the exact
solution curve.
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Figure 43: Simulated datasets used in variance experiment. All were generated using Model 3 at a fixed
set of parameters, with nl = 5% relative random noise. Solid line denotes the exact solution and ‘x’ the
simulated (noisy) data used.
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Table 24 shows the exact and resulting estimated parameters and their standard error for each of the six
cases, for both exact (clean) and noisy data. The same fitting algorithms used previously were used in these
cases. Note that in the underdetermined n = 4 case we see imaginary values in some places due to taking
the square root of a negative number. Figure 44 contains plots of the resulting fits to data for the smaller
numbers of data points. In the clean data case, fits to data are essentially exact for all cases n ≥ 6, so plots
are omitted.

We have to be careful in interpreting these results since the model provides a substantially better fit to
the data in these cases than to the actual data. Overall, we do not observe a monotone decreasing trend in
the variance as the number of data points increases for either the clean or noisy data case, although we do
see such a trend for the larger numbers of data points. This is most likely because the 1

n−p starts to dominate
the standard error formula as n gets large.
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actual n = 4 n = 6 n = 8 n = 16

q∗ µ σ µ σ µ σ µ σ
a1 8.1381e-02 1.1743e-02 1.5472e-03 8.0853e-02 5.7474e-04 8.1204e-02 1.0786e-04 7.9730e-02 5.2508e-04
a2 -2.8643e-02 3.6710e-02 1.4520e-03 -2.8459e-02 3.1611e-04 -2.8582e-02 5.4810e-05 -2.8143e-02 2.4178e-04
a3 -8.7493e-02 -2.4761e-01 3.5435e-03 -8.7692e-02 6.3710e-04 -8.7567e-02 1.1354e-04 -8.8015e-02 4.9146e-04
a4 4.9259e-03 4.2757e-01 9.3445e-03 5.3173e-03 2.4900e-03 5.1208e-03 4.9774e-04 6.3119e-03 2.5533e-03
N0 239 300 1.5138 240 0.85403 239 0.16626 242 0.8539
J/n 9.1499e-16 5.9907e-02 5.6628e-03 4.0087e-01

actual n = 32 n = 64 n = 100 n = 500

q∗ µ σ µ σ µ σ µ σ
a1 8.1381e-02 7.9636e-02 3.5079e-04 7.6553e-02 6.5870e-04 7.7992e-02 3.6006e-04 7.8351e-02 1.4242e-04
a2 -2.8643e-02 -2.8129e-02 1.5344e-04 -2.7245e-02 2.8158e-04 -2.7641e-02 1.5226e-04 -2.7785e-02 5.9413e-05
a3 -8.7493e-02 -8.8012e-02 3.1010e-04 -8.9019e-02 5.6903e-04 -8.8591e-02 3.0724e-04 -8.8411e-02 1.1976e-04
a4 4.9259e-03 6.5443e-03 1.7758e-03 9.3428e-03 3.4293e-03 8.4358e-03 1.8876e-03 7.9382e-03 7.5679e-04
N0 239 242 0.58223 248 1.1266 245 0.6120 244 0.2427
J/n 3.8914e-01 2.8346e+00 1.3267e+00 1.0446e+00

actual n = 4 n = 6 n = 8 n = 16

q∗ µ σ µ σ µ σ µ σ
a1 8.1381e-02 3.3155e-01 0 + 8.9725e-06i 8.6099e-02 2.5083e-03 8.8002e-02 1.1445e-02 1.0233e-01 7.1767e-03
a2 -2.8643e-02 -2.5645e-01 0 + 8.4203e-06i -1.5490e-02 1.2967e-03 -3.6776e-02 5.9307e-03 -3.4715e-02 3.2123e-03
a3 -8.7493e-02 4.7215e-01 0 + 2.0549e-05i -1.0577e-01 2.6417e-03 -8.2684e-02 1.2453e-02 -7.5025e-02 6.3402e-03
a4 4.9259e-03 -1.4978e+00 0 + 5.4192e-05i 3.0935e-03 1.0864e-02 1.1543e-02 5.3646e-02 -4.9558e-02 3.4456e-02
N0 239 100 0 + 0.0029274i 212 3 237 17 205 10
J/n 3.0781e-20 1.0545e+00 6.3982e+01 6.9975e+01

actual n = 32 n = 64 n = 100 n = 500

q∗ µ σ µ σ µ σ µ σ
a1 8.1381e-02 9.3379e-02 1.0246e-02 7.2356e-02 5.6815e-03 7.6869e-02 4.7745e-03 8.0454e-02 2.3430e-03
a2 -2.8643e-02 -3.3968e-02 4.4656e-03 -2.7491e-02 2.4539e-03 -2.7532e-02 2.0228e-03 -2.7955e-02 9.7500e-04
a3 -8.7493e-02 -8.5598e-02 9.0558e-03 -9.0187e-02 4.9913e-03 -8.8683e-02 4.0842e-03 -9.0184e-02 1.9714e-03
a4 4.9259e-03 2.1025e-02 5.0568e-02 2.3388e-02 2.9641e-02 9.1700e-03 2.5075e-02 2.3591e-02 1.2276e-02
N0 239 220 16 260 10 248 8.1972 241 3.9389
J/n 3.1765e+02 2.1773e+02 2.3484e+02 2.8203e+02

Table 24: Exact and estimated parameters with variance for various numbers of observations n. Top half of results are from clean (exact) datasets and
bottom are from noisy.
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Figure 44: Resulting fits to the data with 5% noise for various values of n. Cost function values are scaled
by the number of data points.
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7 Summary

7.1 Time-varying coefficients

Table 25 summarizes cases in which the null hypothesis of constant coefficients in the model can be rejected
at a confidence level of 75% or higher. In most cases, we do not observe a difference in the statistical
significance of adding time-dependent birth coefficients b(t) versus death coefficients d(t), though for a
few dataset/model combinations, we see statistical significance of adding d(t) where adding b(t) is not
significant.

Dataset
Model coefficient type 1 2 3 4 5 6

1 p.w. constant
p.w. linear

2 p.w. constant 85.4 98.5 99.9 88.2
p.w. linear 89.9 99.9 76.6

3 p.w. constant 95.6 77.7 99.8 99.9 91.5
p.w. linear 99.8 82.4 99.9 99.9 99.9

4 p.w. constant b 99.7 90.6 99.9 99.9 99.9 99.9
p.w. constant d 99.7 92.0 99.9 99.9 99.9 99.9
p.w. linear b 99.7 78.6 99.9 99.9 99.9
p.w. linear d 99.7 83.8 99.9 99.9 99.9

5 p.w. constant b 98.2 95.6 99.9
p.w. constant d 98.9 96.7 99.9 83.4
p.w. linear b 97.6 99.2 96.1 99.9
p.w. linear d 96.3 97.9 95.3 99.9 87.3

6 p.w. constant b 99.9 96.0 99.9 99.9 99.9 99.9
p.w. constant d 99.9 98.0 99.9 99.9 99.9 99.9
p.w. linear b 99.9 88.8 99.8 99.9 99.9 99.9
p.w. linear d 99.9 94.2 99.9 99.9 99.9 99.9

7 p.w. constant b 83.3 93.1
p.w. constant d 77.6 99.9 99.9 77.7

Table 25: Summary of statistical significance. Bold numbers denote confidence levels of 90% and above,
while plain denote 75% to less than 90%.

However, the previous results section indicates that in many cases for the best fitting models, time-
dependent parameters d(t) yielded smaller least squares residuals than b(t). Though these differences are
slight in some cases, this finding is commensurate with the belief that the pesticide more dramatically affects
the aphid death rate than the birth rate.

Overall, the results statistically justify the incorporation of time-dependent parameters in the models.
There is little perceptible difference in statistical significance between adding piecewise constant versus
piecewise linear coefficients. The form of these coefficients could be further refined with more information
on the biological processes.

7.2 Best fitting models

We make some summary comments on which models fit the data best (in terms of least squares residual). In
general, as expected, changing to models with more degrees of freedom improved the model fit to the data,
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though in many cases, not appreciably. The list progresses approximately according to increasing model
performance with time-varying coefficients, because their introduction yielded significantly better results.

• Model 1 is incapable of fitting our data in any situation.

• Model 2 rarely fits the data at all when taken with constant coefficients. The one exception is the data
set for weedy margin, low spray, where it does a decent job in fitting the exponential trend. These can
be verified by looking at the best fit curves. In some cases, improvement is made with Model 2 by
using a piecewise linear time-varying parameter.

• Models 5 and 7 even taken with time-varying coefficients often were outperformed by the models
listed next, also taken with time-varying coefficients.

• Model 3 with constant coefficients is really equivalent to Model 2 for our downward trend datasets and
thus also does poorly fitting the data, but Model 3 with time varying coefficient a(t) does a reasonable
job in many cases, outperforming Models 4–7 with constant coefficients. Changing to time-varying
coefficients for this model often made a statistically significant difference.

• Models 6 and 4, with their heavy decay terms, often fit the data very well when taken with time-
varying coefficients. For Model 4, we often find statistically significant differences when changing to
a time-varying coefficient. This is less often true, for example, with Model 5. In considering Model 6
with time-varying coefficients, we reject the null-hypothesis far more often than Model 7. In fact, we
almost always find statistically significant differences when changing to a time-varying coefficient.

While Models 4 and 6 leave the smallest least squares residuals, the most general exponential Model
3 with piecewise constant or piecewise linear coefficients often yields acceptable fit to data. Its ability to
fit the data combined with its simplicity make it an attractive choice for modeling. In many cases, slight
improvement is made by changing to the logistic or other models, but the required extra degrees of freedom
may make these models less desirable.

Our estimations for birth and death parameter values are within an order of magnitude of the values
derived in the laboratory by Stark. This represents a good fit in general between models and experimental
data, especially since it incorporates observation and process error from field data as well as the difference
between the open system in the field (in vivo) and the closed laboratory setting (in vitro) in which the Stark
values were derived.

7.3 Comparison between data sets

We remark that we use an ordinary least squares (OLS) data fit criterion throughout this work. OLS is equiv-
alent to the maximum likelihood (MLE) criterion under certain assumptions on the statistical error model
underlying the inverse problems. In particular, if we assume errors are independent identically distributed
(i.i.d.) Gaussian with constant variance (constant across sampling), the estimation processes are equivalent.

It is common practice in population studies to use the fit criteria (cost function value) as the key quantita-
tive metric in assessing quality of the model fit (i.e., appropriateness of the mathematical model in describing
the data and biological processes). One can observe from our efforts that this is inadequate as the sole mea-
sure of success. For example, we compare Model 3 and Model 7 with constant coefficient fits to dataset 6
producing residuals of J = 2.430 × 104 and J = 1.627 × 104, respectively. If one considers the associ-
ated qualitative fits by comparing Figure 33 (the (3,1) entry), with Figure 35 (the (2,1) entry), it is virtually
impossible to argue which is the more appropriate model. However, we note that in Model 3, adding de-
grees of freedom by moving to a time-dependent coefficient, yields statistically significant improvement at
the p < 0.1 level whether we use piecewise constant or piecewise linear coefficients. The corresponding
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analysis with Model 7 reveals that allowing piecewise constant coefficients does not result in a statistically
significant improvement in the fit. Since one might expect that from a biological perspective, time varying
rates are important in these data, one would be more likely to favor Model 3 over Model 7 even though
the residual for Model 7 with constant coefficients is smaller than that for the comparable Model 3. This
subjective analysis illustrates how difficult it is in general to combine strictly analytical results from model
fitting with biological understanding and expectations in drawing conclusions about the “best” model for a
given experimental data set.

Nonetheless, the ultimate goal of this model fitting is to make comparisons between the various margin
and spray combinations explored in the field study. Therefore we present an example comparison and
analysis which offers promise in the difficult task of drawing biological implications from the model fitting
results detailed previously. The simplicity and biological plausibility of the basic exponential model (Model
3) and logistic model (Model 6) make them good candidates for these comparisons. Here we consider the
case of piecewise linear coefficients, since they probably better reflect the dynamics of selective pesticide
spray.

In Figure 45 (left panel), we plot differences δa(t) in time-varying birth/death rates for bare margins
versus weedy margins (δa(t) = abare(t) − aweedy(t)), for Model 3. In the right panel, we plot differences
δd(t) in time-varying death rates (δd(t) = dbare(t) − dweedy(t)) for Model 6. In previous efforts, Banks
[5] investigated the difference in aphid densities in plots with bare margin and those with weedy margins,
finding a four- to five-fold increase in densities for bare margin plots over those for weedy margin plots.
These findings suggested a strong interaction between margin type and aphid densities, perhaps due to
predation differences for differing margin types (at least when analyzing static (in time) datasets). The
current experiments involve time series data and invite the question of interaction of different margin types
with pesticide levels as manifested in birth/death rates over time.
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Figure 45: Plot of difference due to margin type in time-varying coefficients for Model 3 and Model 6.

The analysis depicted in Figure 45 reveals that for no spray or light spray pesticide treatments, habitat
margin type has little effect on aphid birth/death rates. However for high levels of spray, there is a marked
difference between rates over time as a function of margin type. In particular, one can use the information
embodied in Figure 45 to argue that weedy margin habitats produce increasingly lower cumulative growth
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rates with time during the duration of the high spray experiments. This suggests a strong interaction be-
tween margin type (possibly the pressure of predators) and pesticide spray level, whose synergism affects
aphid density decrease in the case of sufficiently high pesticide levels. This interaction is also supported
statistically by the MANOVA results detailed in [6].

A potentially more valuable comparison of Models 3 and 6 can be made by instead comparing a(t) for
Model 3 to its counterpart in Model 6: b−d(t)N(t). This is more representative of the instantaneous growth
rate in the latter model. Figure 46 contains plots of the time-varying model coefficients for Models 3 and
6. We observe that the average rates predicted by Model 3 are similar in most cases to those predicted by
Model 6, with exceptions where extreme coefficients were predicted. In several cases, the time series trends
are comparable as well.
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Figure 46: Plot of time-varying coefficients for Model 3 (top row) and Model 6 (bottom row). Graph legends
are annotated with the average growth rate over the time period considered. Observe similarities between
the rates in the separate models.

Finally, we examine Figure 47, which is comparable to the graphs in Figure 45 above, but contains
plots of the difference in b − d(t)N(t) between bare and weedy ground for only the last three intervals.
Again there is evidence of the substantial difference in growth rates between bare and weedy ground as one
changes spray concentration, with the greatest difference occurring at high spray levels.
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Figure 47: Plot of difference due to margin type in time-varying coefficients for Model 6. Difference plotted
is for the bare growth rate minus the weedy growth rate using b− d(t)N(t) as the rate.
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